Study The Lung-Protective Effects of Riboflavin and Cyanocobalamin Against Lung Toxicity-Induced by Cyclophosphamide in Rats

Waleed K. Ghanim*1, Muhsin S. G. Al-Moziel*2and Hussein M. Abood**

*Department of Pharmacology and Toxicology, College of Pharmacy, University of Basra, Basra, Iraq.
**Electron Microscope unit, College of Pharmacy, University of Basra, Basra, Iraq.

Abstract

Cyclophosphamide is a cytotoxic alkylating agent, it's used associated with different side effects including lung toxicity through oxidative damage. Riboflavin and cyanocobalamin have lung-protective effects. This study was designed to evaluate the protective effects of both vitamins against lung toxicity induced by cyclophosphamide. Seventy healthy adult albino rats of both sexes were divided into seven groups each group containing ten rats, all groups were treated for seven days then after (150 mg/kg) of cyclophosphamide was injected intraperitoneally at day seven, these groups were divided as follow: Group one: intraperitoneally injected with (1ml/kg/day) of normal saline. Group two: injected intraperitoneally with a single dose of cyclophosphamide (150 mg/kg). Group three: administered orally riboflavin at a dose (10 mg/kg/day) and cyclophosphamide. Group four: riboflavin administered orally at a dose (40 mg/kg/day) and cyclophosphamide. Group five: riboflavin administered orally at a dose (0.1 mg/kg/day) and cyclophosphamide. Group six: administered orally a mixture of riboflavin at a dose (10 mg/kg/day) and cyanocobalamin at a dose of (0.1 mg/kg/day) and cyclophosphamide. Group seven: administered orally a mixture of riboflavin at a dose (40 mg/kg/day) and cyanocobalamin at a dose (0.1 mg/kg/day) and cyclophosphamide. On day eight rats were sacrificed and serum was obtained for glutathione and the total antioxidant capacity measurement and lung extracted for the immunohistochemical study; both vitamins significantly (P<0.05) increased glutathione and the total antioxidant capacity and improve the immunohistochemical changes in comparison with the cyclophosphamide-treated group, these results indicate the protective effects of both vitamins against cyclophosphamide-induced lung toxicity.

Keywords: Cyclophosphamide, Vitamin B2, Vitamin B12, Lung toxicity

دراسة التأثيرات الوقائية للريبوفلافين والسيانوكوبالامين ضد سمية الرئة التي يسببها سيكلوفوسفاميد في الجرذان

وليد خالد غانم*1، محسن صغير المزيّع*2 و حسين محمود عبود**

"فرع الأدوية والسموم، كلية الصيدلة، جامعة البصرة، العراق
"وحدة المجهر الإلكتروني، كلية الصيدلة، جامعة البصرة، العراق

الخلاصة

سيكلوفوسفاميد هو عامل مؤلِّك سام للخلايا، يستخدم معناها بآثار جانبية مختلفة بما في ذلك تسمم الرئة الذي قد ينجم عن الضرار التهابي. الريبوفلافين والسيانوكوبالامين تأثيرات واقية للرئة. صممت هذه الدراسة لتفحص التأثيرات الوقائية لكليهما للرئة الناجمة عن السيكلوفوساميد. تم تقسيم 70 جرذًا بالغًا سليمًا من كلا الجنسين إلى سبع مجموعات تحتوي كل مجموعة على عشرة فئران، وعولجت جميع المجموعات لمدة سبعية أيام ثم بعد ذلك حقنت ب (150 مجم/كجم) من سيكلوفوساميد خلال السباعي في اليوم السابع، ثم تقسم هذه المجموعات إلى مجموعات تحتوي كل مجموعة على عشة فئران. سمم الجزء الأولي: حقن داخل الصفاق (1 مل/كجم/يوم) من محلول ملحي عادي. المجموعة الثانية: حقن داخل الصفاق (0.1 مجم/كجم/يوم) حقن بالسيكلوفوساميد (150 مجم/كجم). المجموعة الثالثة: تناول الريبوفلافين بجرعة (0.1 مجم/كجم/يوم) و سيكلوفوساميد. المجموعة الرابعة: الريبوفلافين يدخل عن طريق الفم بجرعة (40 مجم/كجم/يوم) وسيكلوفوساميد. المجموعة الخامسة: الريبوفلافين يدخل عن طريق الفم بجرعة (1 مجم/كجم/يوم) و سيكلوفوساميد. المجموعة السادسة: حقن بالسيكلوفوساميد بجرعة (1 مجم/كجم/يوم) و سيكلوفوساميد. المجموعة السابعة: حقن بالسيكلوفوساميد بجرعة (40 مجم/كجم/يوم) و سيكلوفوساميد. المجموعة الثامنة: حقن بالسيكلوفوساميد بجرعة (1 مجم/كجم/يوم) و سيكلوفوساميد. المجموعة التالية: حقن داخل الصفاق (1 مل/كجم/يوم) من محلول ملحي عادي. المجموعة الثانية: حقن داخل الصفاق (0.1 مجم/كجم/يوم) قياس محتوى الأكسجين والقدرة المضادة للأكسدة في كل مجموعة بعد الاتصال بالسيكلوفوساميد. قياس التغيرات المناعية الكيميائية بالمجهر الالكتروني. في النتائج، تم تقييم النتائج بمستخدم زبان R. نجت نتائج هذه الدراسة إلى التأثيرات الوقائية لكلا الفيتامينين ضد التسمم الرئوي عن السيكلوفوساميد. الانحلالات المفتيحة: سيكلوفوساميد، فيتامين ب2، فيتامين ب12، تسمم الرئة

**Corresponding author E-mail ph.wkg81@yahoo.com
Received: 11/2/2022
Accepted: 19/4/2022

Iraqi Journal of Pharmaceutical Science
Introduction

Cyclophosphamide (CP) is a cytotoxic alkyllating agent which is widely used to treat a wide range of malignant diseases including lymphoma, leukemia, breast cancer (1); however, its usage is associated with different side effects including lung toxicity, nephrotoxicity, hepatotoxicity (2). Pulmonary toxicity induced by CP is believed to result from the active metabolite of CP which are phosphoramidate mustard and acrolein that may induce oxidative damage to the alveolar tissues (3). Riboflavin which is known also as vitamin B2 belongs to the group of vitamins that are soluble in water (4), that found in different types of food like cheese, egg, salmon, dairy products (5). Riboflavin (vitamin B2) is considered an important precursor of two important nucleotides first one is flavin mononucleotide (FMN) and the second one is flavin adenine dinucleotide (FAD) (6); these nucleotides have important roles in different redox reactions (6). It was found that riboflavin-deficit mice may show a reduction in fatty acid oxidation furthermore deficiency of vitamin B2 may cause anaemia, skin diseases, cardiomyopathy (7, 8). Cyanocobalamin (vitamin B12) is a water-soluble vitamin (9) found in milk, fish, eggs, and meat (10). Vitamin B12 (cyanocobalamin) is considered an important cofactor for the metabolism of homocysteine and methylmalonic acid (11); furthermore, its deficiency may be associated with numerous diseases like ischemic stroke, anaemia, disturbed vision (12, 13). The current study aims to evaluate the protective effects of riboflavin and cyanocobalamin against cyclophosphamide-induced pulmonary toxicity.

Materials and Method

Experimental study

Seventy healthy adult albino rats of both sexes with a weight range from 200 to 230 gm were used in the present study, rats of both sexes equally distributed throughout the experimental groups; they were achieved from and kept under controlled temperature in the Animal House of Basrah University's College of Pharmacy. The animals were fed commercial pellets and had free access to the water supply throughout the trial.

Drugs

Five hundred mg of cyclophosphamide vial was provided by Baxter in the United States. Amazing nutrition in the United States provided riboflavin capsules (400 mg). TQ pharma, Japan, provided the cyanocobalamin Tablet (1 mg).

Study design

The healthy experimental albino rats were divided randomly into seven groups each group consist of ten rats as follows:

Group one: Rats in this group were orally administered vitamin B2 at a dose (150 mg/kg/day) (15) for seven consecutive days and one intraperitoneal injection of cyanocobalamin at a dose (150 mg/kg), on day seven.

Group two: Rats in this group were orally administered vitamin B12 at a dose (0.1 mg/kg/day) (15) for seven consecutive days and a single IP injection of cyclophosphamide at a dose (150 mg/kg), on day seven.

Group three: Rats in this group were intraperitoneally injected with CP at a dose of 150 mg/kg (Group two) resulted in a significant decrease (P<0.05) in the serum level of glutathione in comparison with the relevant level in control (Group one). Mean ± SD of the levels of glutathione in the serum for (Group two and Group one) was found to be respectively, 33.4 ± 0.516 and 87.6 ± 0.516. Moreover, (Table 1) illustrated that there was a significant increase (P<0.05) in serum glutathione
level in groups treated with vitamin B2 (10mg/kg/day and 40 mg/kg/day) each for one week prior to CP (IP 150mg/kg) (groups three, and four respectively), vitamin B12 (0.1mg/kg/day for one week prior to CP (IP 150mg/kg) (Group five), a mixture of vitamin B2 (10mg/kg/day) with vitamin B12 (0.1mg/kg/day) prior to CP (IP 150mg/kg) (Group six) and vitamin B2 (40mg/kg/day) with vitamin B12 (0.1mg/kg/day) (Group seven) for one week prior to IP injection of 150mg/kg of CP compared to the relevant serum level to (Group two) rats IP injected with CP (150mg/kg). Mean ± SD of serum glutathione levels for groups (three, four, five, six, seven and two) were respectively, 47.4 ± 0.516, 50.9 ± 0.737, 54.1 ± 0.316, 61.3 ± 0.483, 71.5 ± 0.527, and 33.4 ± 0.516.

Table 1. Effects of Vitamin B2 and Vitamin B12 on Serum Total Antioxidant Capacity Level

<table>
<thead>
<tr>
<th>Group/Treatment</th>
<th>Mean TAC mmole/l ±SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group one (control)/ injected IP with 1ml/kg/day NS</td>
<td>1.42 ± 0.0186a</td>
</tr>
<tr>
<td>Group two/CP IP 150mg/kg</td>
<td>0.05 ± 0.003b</td>
</tr>
<tr>
<td>Group three/ vitamin B2 (10mg/kg/day) prior to CP (IP 150mg/kg)</td>
<td>0.56 ± 0.008c</td>
</tr>
<tr>
<td>Group four/ vitamin B2 (40mg/kg/day) prior to CP (IP 150mg/kg)</td>
<td>0.86 ± 0.03d</td>
</tr>
<tr>
<td>Group five/ vitamin B12 (0.1mg/kg/day) prior to CP (IP 150mg/kg)</td>
<td>1.03 ± 0.008e</td>
</tr>
<tr>
<td>Group six/ vitamin B2 (10 mg/kg/day) plus vitamin B12 (0.1mg/kg/day) prior to CP (IP 150mg/kg)</td>
<td>1.16 ± 0.024f</td>
</tr>
<tr>
<td>Group seven/ vitamin B2 (40mg/kg/day) plus vitamin B12 (0.1mg/kg/day) prior to CP (IP 150mg/kg)</td>
<td>1.27 ± 0.017g</td>
</tr>
</tbody>
</table>

Each value represents mean ± standard deviation (SD). Values expressed in small letters (a, b, c, d, e, f, and g) are significantly different (P<0.05). Number of animals in each group=10

Immunohistochemistry (TUNEL assay) of rats’ lung tissue

A section of rats’ lung tissue of (Group one) shows normal control lung tissue showing part of lung alveolar shows normal architecture cells (no apoptosis, green-colored cells) as shown in Figure (1A).

Immunohistochemistrical changes in rats’ lung intraperitoneally injected with a single dose of CP (150mg/kg) (Group two) revealed damages included inflammatory cells are found with nuclear fragmentation (red arrow) and pyknosis (black arrow) with a thickness of the alveolar wall characterized by massive apoptosis as shown in the Figure (1B). Section of rats’ lung orally administered of (10 mg/kg/day, 40mg/kg/day) of vitamin B2 (Group three and Group four; respectively) for seven consecutive days before IP injection of (150mg/kg) of CP and orally administered of (0.1 mg/kg) of vitamin B12 (Group five) for seven days before IP injection of (150mg/kg) of CP at day seven (Group six and Group seven) respectively show improvement in lung tissue compared with other treated groups that have noted normal architecture alveolar wall (black arrow). As shown in Figures (1F, and 1G) respectively.

In addition to that combination of oral administration vitamin B2 (10, 40mg/kg) with
Immunohistochemical study of lung

Figure 1. Light micrograph of immunohistochemical changes in lung tissue of rats are presented on the plate. A) the normal control lung tissue showing part of lung alveolar shows normal architecture cells (black arrow). B) lung tissue of rats treated with 150 mg/kg of cyclophosphamide has revealed damages included inflammatory cells are found with nuclear fragmentation (red arrow) and pyknosis (black arrow) with a thickness of the alveolar wall. C) lung tissue treated with 10 mg/kg of Vit. B2 shows fewer histopathological changes such as inflammatory cell found (black arrow) karyorrhexis (red arrow). D) lung tissue treated with 40 mg/kg of Vit. B2 shows destruction of alveolar-like emphysema (black arrow) with infiltration inflammatory cells (red arrow). E) lung tissue treated with 0.1g/kg of Vit. B12 shows fewer infiltration cells (red arrow) with a normal alveolar wall (black arrow). F) lung tissue treated with 0.1g/kg of Vit. B12 combination with 10 mg/kg of Vit. B2 shows improvement in lung tissue compared with other treated groups that have noted normal architecture alveolar wall respectively (black arrow). G) lung tissue of rat treated with a combination of Vit B12 0.1g/kg and Vit B2 40mg/kg shows normal lung tissue (black arrow). TUNNEL stain 40X.
Study lung protective effects of riboflavin and cyanocobalamin

Discussion

In the present study, rats were treated with a single dose of CP (150 mg/kg) Group two produce a significant reduction in a glutathione level (P< 0.05) compared to Group one (control group) this attributed to the biotransformation of CP since, Cytoskeleton is produced required metabolic bioactivation by cytochrome P450 (CYP-450) enzyme system producing 4-hydroxycyclophosphamide which undergo ring-opening to aldophosphamide which decompose spontaneously to phosphoramid sword (which is responsible for antitumor activity) and acrolein, both metabolites(phosphoramid and acrolein) will induce oxidative damage and free radicals formation, furthermore acrolein will form adduct with glutathione leading to decrease in glutathione level, glutathione considered as the most important intracellular non protein thiol donor group, playing important functions in detoxification of reactive oxygen species, acting as cofactor for other enzymes and regulate DNA synthesis, so cyclophosphamide may result in reduction of glutathione level (17).

Furthermore, pre-treatment with vitamin B2 (10 mg/kg/day, and 40 mg/kg/day) Group three and four respectively; and pre-treatment with (0.1mg/kg) of vitamin B12 Group five and pre-treatment with the combination of both vitamins Group six and seven before CP injection produce a significant increase in glutathione level this attributed to the role of vitamin B2 as being the source for two important coenzymes which are flavin mononucleotide and flavin adenine dinucleotide (18) which have an important role in the oxidation-reduction reaction, also for the activity of superoxide dismutase and catalase (19), furthermore for conversion of oxidized form glutathione(GSSH) to reduced one (GSH) (15, 20).

Whereas vitamin B12 plays an important role in the maintenance of glutathione level by direct-acting as a superoxide scavenger (21), furthermore vitamin B12 might have a protecting role against (low-grade) inflammation-induced oxidative stress by affecting or modulating the expression of growth factors and inflammatory cytokines (22).

Rats treated with CP (150 mg/kg) Group two produce a significant reduction in TAC level (P< 0.05) compared to Group one (control group) this effect could be explained by damaging effects produced by CP as a result of its metabolism and oxidative stress which induce a reduction in TAC level (P< 0.05) compared to Group one and rat pre-treated with different doses of vitamin B2 Groups three and four and a fixed dose of vitamin B12 Group five prior to CP shows fewer histopathological changes such as inflammatory cell, karyorrhexis and destruction of alveolar-like emphysema when compared with Group two furthermore; rats pre-treated with combinations of different doses of vitamin B2 and fixed-dose of vitamin B12 Groups six and seven prior to CP injection shows improvement in lung tissue compared with other treated groups that have noted normal architecture alveolar wall this attributed to the effects of both vitamin B2 and vitamin B12 as the antioxidant activity and their ability to increase the level of glutathione which consist with the finding of Bashandy SA et al and Moshiri M et al which founds that vitamin B2 and vitamin B12 have an important role in the maintenance glutathione level and conversion of glutathione from oxidized form to reduced form (26, 27).

Conclusion

Cyclophosphamide has serious lung toxicity side effects, so to reduce this effect, pre-treatment with a combination of vitamin B2 and vitamin B12 may have a beneficial role to reduce this toxic effect.

Acknowledgment

The authors gratefully thank the College of Pharmacy, University of Basrah, for supporting the present work.

Ethical Clearance

In Iraq, the Research Ethical Committee oversees scientific research with ethical approval from the ministries of the environment, health, higher education, and scientific research

Conflict of Interest

There are no conflicts of interest declared by the authors.
References

