Preparation and in vitro Evaluation of Synthetic High-Density Lipoproteins as Parenteral Drug Delivery System for Tamoxifen Citrate

Ameerah A. Radhi1,2, Wedad K. Ali1 and Fitua Al-Saedi 2

1Department of Pharmaceutics, College of Pharmacy, Mustansiriya University, Baghdad, Iraq.
2Department of Clinical Laboratory Sciences, College of Pharmacy, Mustansiriya University, Baghdad, Iraq.

Abstract

The aim of this study was to develop a bioinspired drug delivery system for tamoxifen citrate (TC) based on synthetic high density lipoproteins (sHDL). For this purpose, sHDL nanoparticles were prepared from a mimic peptide (5A peptide) and different lipids using thin film hydration method followed by sonication and thermal cycling. Various formulation parameters including lipid composition, lipid to peptide ratio, and drug to carrier ratio had a remarkable impact on the properties and the release pattern of the nanoparticles. The optimized formula (F14) displayed a spherical morphology, average diameter of 9.65 ± 0.7 nm, and a zeta potential (ζ) equal to -48.4±0.5 mV. The encapsulation efficiency and drug loading of F14 were (96.5±0.7%) and (9.65±0.1%), respectively. Besides, F14 showed a good stability in human plasma for 24 hours. The encapsulation of the lipophic drug within the hydrophobic core of the nanocarrier enabled a slow drug release from nanoparticles which follows a near zero order controlled mechanism. The promising results of this study open an avenue for using sHDL as a delivery system for administration of TC intravenously. Therefore, the optimized formula is suggested to be a subject for future analyses in terms of in vitro cytotoxicity against breast cancer cells and in vivo evaluation in tumor bearing animals.

Keywords: Tamoxifen citrate, Breast cancer, Bioinspired drug delivery system, Synthetic high density lipoproteins, Mimetic peptide.

Introduction

Breast cancer (BC) is one of the most common types of cancer and ranked the second cause of cancer mortality in women following lung cancer (1). Tamoxifen citrate (TC) is the standard endocrinotherapy for estrogen receptor (ER) positive breast cancer in premenopausal women for nearly four decades (2). TC is the trans isomer of atropineylenethyline derivative, chemically designated as 2 - [4 - [(Z)-1,2-Diphenylbut-1-enyl] phenoxy]-N, N-dimethylethanesamine dihydrogen 2-hydroxypropane-1,2,3-tricarboxylate (3). It is a weak base with a dissociation constant (pKa) of 8.85; and has a highly lipophilic nature with value of partition coefficient (Log P) equals to 5.93 (4). It has melting point of 140-142°C, and it is slightly soluble in water and in acetone, but soluble in methanol (5).

Tamoxifen is defined pharmaco logically as a selective estrogen receptor modulator (SERM); tamoxifen demonstrates antagonist effect on the breast and agonist effect on other tissues such as...
uterus and bones40. The drug’s antagonist (antiestrogen) effect has succeeded in decreasing the disease recurrence and mortality. Nevertheless, several adverse effects were attributed to its agonist properties including endometrial hyperplasia, polyps, cancer, and increased risk of thromboembolism7,8. In this context, it is essential to develop novel strategies that are highly specific to the tumor site. Nano-based drug delivery systems have emerged as a successful approach99. Synthetic high density lipoproteins (sHDL) possess most of the advantages of the natural HDL in term of excellent biocompatibility, reticuloendothelial system (RES) escape, and prolonged drug’s circulation. Several sHDL products have been tested in phase I and II clinical trials with over 800 patients, and data revealed that HDL products are well tolerated with no major side effects100. Besides, the small size of sHDL facilitates better penetration into tumor tissues. Apolipoprotein A-I (apoA-I), the main apolipoprotein in HDL, possesses an excellent ability to target scavenger receptor class B type I (SR-BI) overexpressed in various kinds of cancer cells including breast cancer. Thus, the delivery of anticancer drugs through the receptor–ligand binding between SR-BI and apoA-I is obviously a promising therapeutic approach101.

Concerning the drug loading capacity of sHDL, hydrophobic molecules can be passively encapsulated into the core of sHDL. Likewise, amphiphilic drugs are readily inserted into the lipid membrane. The challenging molecules like hydrophilic drugs can be conjugated to a suitable lipophilic functional group to enhance their hydrophobicity as shown in figure (1). The resulting prodrug can be incorporated into the core of sHDL to be later cleaved and release the original therapeutic agent at the target site122.

Natural HDL exist in two main subclasses, the discoidal and the spherical HDL based on their constituents119. As previously reported in literature, sHDL formulation comprising phospholipids (with or without cholesterol) and peptides usually leads to formation of discoidal sHDL (also termed as sHDL nanodiscs). On the other hand, the preparation of spherical sHDL usually calls for phospholipids, free cholesterol (FC), peptides, cholesteryl esters (CE), and triglycerides (TG). In this study, both discoidal sHDL and spherical sHDL nanoparticles have been developed141.

Figure 1. Schematic representation of (A) discoidal and (B) spherical sHDL drug loading capacity122

The nanocarrier intended for targetinganticancer agent to the tumor site and administration via intravenous route must fulfill certain criteria. Firstly, it must have maximum retention of the encapsulated drug until it reaches cancer cells, since rapid release of the encapsulated drug in the bloodstream can cause systemic toxicity and compromise the targeting ability of the nanocarrier15.Secondly, the size of nanoparticles is also a key parameter for efficient targeting; the diameter range of 10-200 nanometer (nm) is favorable for cancer therapy and likely to benefit from the enhanced permeability and retention (EPR) effect driven tumor accumulation143. Particles smaller than 10 nm are susceptible to premature excretion by kidneys and leakage from the normal vasculature causing severe toxicities in healthy tissues, whereas particles larger than 200 nm are most likely to be cleared from circulation by phagocytes16. Therefore, the aim of this study was to develop a drug delivery system for TC based on sHDL taking into consideration the aforementioned criteria. The phospholipid composition in terms of fatty acid chain length and the degree of saturation; lipids to peptide ratio; and drug to carrier ratio were varied in order to optimize sHDL formulation in terms of the size, homogeneity, and in vitro release behavior.

Materials and methods

Materials

Synthesized 5 A, WLKAFYDK VAEKLKE AFPDWAKAAYDKAAEKAKEAA, was purchased from GenScript USA, Inc. Tamoxifen citrate (TC), 1, 2 - dipalmitoyl-sn - glycerol - 3-phosphocholine (DPPC), egg sphingomyelin (SM), 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and free cholesterol (FC) were purchased from Sigma Aldrich.
Germany. Egg yolk lecithin and cholesteryl oleate (CO) were purchased from Shanghai Tunchem Pharm, China.

Preparation of TC loaded sHDL nanoparticles
Tamoxifen citrate loaded sHDL nanoparticles were prepared by the thin film hydration method. Lipids and TC in predetermined quantities (table 1) were dissolved in chloroform: methanol (1:1) volume ratio. The organic solvent was removed by vacuum, and the resulting film was hydrated with phosphate buffer saline buffer (PBS, pH 7.4). Precise amount of 5 A peptide was dissolved in one milliliter (mL) PBS, and mixed with the lipid suspension. Ultrasound radiation was applied to the mixture using probe sonicator intermittently for one minute (min) duration. The mixture was incubated in water bath at 50⁰C for 10 min and cooled below phase transition temperature of the phospholipid for 10 min. The temperature was cycled at least three times to form sHDL(17).

Table 1. Composition of TC loaded sHDL nanoparticles

<table>
<thead>
<tr>
<th>Formula code</th>
<th>sHDL composition</th>
<th>Lipid to peptide ratio</th>
<th>Lipid quantity (mg)</th>
<th>5 A peptide quantity (mg)</th>
<th>TC quantity (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>DPPC: 5A:TC</td>
<td>2:1</td>
<td>15</td>
<td>7.5</td>
<td>6.08</td>
</tr>
<tr>
<td>F2</td>
<td>SM: 5A:TC</td>
<td>2:1</td>
<td>15</td>
<td>7.5</td>
<td>6.08</td>
</tr>
<tr>
<td>F3</td>
<td>DMPC:5A:TC</td>
<td>2:1</td>
<td>15</td>
<td>7.5</td>
<td>6.08</td>
</tr>
<tr>
<td>F4</td>
<td>DPPC: 5A:TC</td>
<td>1.5:1</td>
<td>15</td>
<td>10</td>
<td>6.08</td>
</tr>
<tr>
<td>F5</td>
<td>SM: 5A:TC</td>
<td>1.5:1</td>
<td>15</td>
<td>10</td>
<td>6.08</td>
</tr>
<tr>
<td>F6</td>
<td>DMPC:5A:TC</td>
<td>1.5:1</td>
<td>15</td>
<td>10</td>
<td>6.08</td>
</tr>
<tr>
<td>F7</td>
<td>DPPC: 5A:TC</td>
<td>1:1</td>
<td>15</td>
<td>15</td>
<td>6.08</td>
</tr>
<tr>
<td>F8</td>
<td>SM: 5A:TC</td>
<td>1:1</td>
<td>15</td>
<td>15</td>
<td>6.08</td>
</tr>
<tr>
<td>F9</td>
<td>DMPC:5A:TC</td>
<td>1:1</td>
<td>15</td>
<td>15</td>
<td>6.08</td>
</tr>
<tr>
<td>F10</td>
<td>DMPC: SM: 5A:TC</td>
<td>1.5:1</td>
<td>10 mg DMPC, 5 mg SM</td>
<td>10</td>
<td>6.08</td>
</tr>
<tr>
<td>F11</td>
<td>DMPC: DPPC: 5A:TC</td>
<td>1:5:1</td>
<td>10 mg DPPC, 5 mg SM</td>
<td>10</td>
<td>6.08</td>
</tr>
<tr>
<td>F12</td>
<td>Lecithin: FC: CO: 5A: TC (10:5:5:10:6.08)</td>
<td>2:1</td>
<td>10 mg lecithin, 5 mg FC, 5 mg CO</td>
<td>10</td>
<td>6.08</td>
</tr>
<tr>
<td>F13</td>
<td>Lecithin: FC: CO: 5A: TC (10:5:5:13.3:6.08)</td>
<td>1:5:1</td>
<td>10 mg lecithin, 5 mg FC, 5 mg CO</td>
<td>13.3</td>
<td>6.08</td>
</tr>
<tr>
<td>F14</td>
<td>Lecithin: FC: CO: 5A: TC (20:10:10:20:6.08)</td>
<td>2:1</td>
<td>20 mg lecithin, 10 mg FC, 10 mg CO</td>
<td>20</td>
<td>6.08</td>
</tr>
</tbody>
</table>

Characterization of sHDL nanoparticles

Determination of particle size and polydispersity (PDI)
The hydrodynamic diameters and size distribution (polydispersity index) of sHDL were determined by dynamic light scattering system (DLS) using a 90Plus Particle Size Analyzer (Brookhaven Instruments Corporation, USA). Each sample was diluted with equal volume of distilled water (DW), and analyzed at temperature of 25⁰C (18).

Determination of zeta potential (ζ)
Each sample was diluted with equal volume of 0.1M KCl solution, then zeta potential measurement was carried out using a zeta plus zeta potential analyzer (Brookhaven Instruments Corporation, USA)(19).

Field emission scanning electron microscope (FESEM)
Field emission scanning electron microscope (FESEM) uses a field emission gun as the source for the electron generation, with electron beam accelerating voltage from 200 V to 30 kV. The electron beam is focused after passing through electromagnetic lenses, and the electron beam scans the surface with the help of scan coils (20). Samples of about two drops were individually deposited onto a glass slide, and allowed to dry at room temperature. The nanoparticles were coated with gold under vacuum to render them electrically conductive. Then, samples were examined using FESEM (Inspect ™ F50, FEI company, USA) to obtain information with respect to the morphology and the surface characteristics of nanoparticles (21).

Determination of drug encapsulation efficiency (EE) and drug loading (DL)
Samples of four milliliters of TC loaded-sHDL were added to amicon® ultra-4 centrifugal filter device (molecular weight cut off MWCO 10,000Da) and centrifuged at 3000 rpm (22). The result of the process was the removal of the un-encapsulated drug in the centrifuge tube, and recovery of TC loaded sHDL in the filter device.
Thereafter, methanol was added to break sHDL and dissolve the encapsulated drug to be assayed by ultraviolet (UV) spectroscopy at 277 nm (23). EE and DL were determined as per the following (24):

\[
\text{EE\%} = \left(\frac{\text{mass of TC in nanoparticles}}{\text{original mass of TC}}\right) \times 100\%
\]

\[
\text{DL\%} = \left(\frac{\text{mass of TC in nanoparticles}}{\text{mass of nanoparticles}}\right) \times 100\%
\]

In vitro drug release profile

The release of TC from different sHDL formulations was carried out using the dialysis bag method: sHDL formulation equivalent to 6.08 mg TC was placed in dialysis bag (MWCO 8000-14000 Da). The dialysis bag was then immersed in 100 mL of PBS (pH 7.4) with 2.5% (w/v) tween 80 for 48 hours at stirring speed of 120 rpm and temperature maintained at 37 ± 0.5°C (25). At predetermined time points, samples of 5 mL were withdrawn from the release media and replaced with the same volume of fresh PBS to maintain sink condition. The released tamoxifen was quantified by UV spectroscopy at the lambda max of the drug (278 nm) and the percentage of drug released was calculated (26).

Analysis of the kinetics of drug release from sHDL nanoparticles

The in vitro release data were fitted by different release models summarized in table (2) to describe the mechanism of drug release from sHDL nanoparticles (27).

Table 2. Summary of mathematical models (28)

<table>
<thead>
<tr>
<th>Model</th>
<th>Mathematical Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero-order model</td>
<td>(Q_t = Q_0 + K_0 t)</td>
</tr>
<tr>
<td>First-order model</td>
<td>(\log Q_t = \log Q_0 - K_1 t/2.303)</td>
</tr>
<tr>
<td>Higuchi model</td>
<td>(Q_t/Q_0 = K_H \sqrt{t})</td>
</tr>
<tr>
<td>Korsmeyer–Peppas</td>
<td>(Q_t/Q_0 = K_{KP} t^n)</td>
</tr>
</tbody>
</table>

Where \(Q_t \) represents the amount of drug released at time \(t \) and \(Q_0 \) is the initial amount of drug in solution which often equals zero. \(K_0, K_1, K_H, \) and \(K_{KP} \) are the release rate constants of zero order, first order, Higuchi and Korsmeyer–Peppas, respectively. The release exponent \(n \) indicates the mechanism of the drug release; When the numerical value of \(n \) is less than 0.45, a Fickian diffusion is the predominant mechanism of drug release, while 0.45 < \(n \) < 0.89 implies an anomalous (non-Fickian) diffusion. When \(n \) equal to 0.89, it refers to Case-II transport, and when \(n > 0.89 \), it refers to Super case-II transport (28).

Determination of colloidal stability in human plasma

The optimized formula (F14) was added to human plasma at ratio of 1:1 (v/v). The mixture was kept in water bath at 37°C for 24 hours to simulate the physiologic conditions that sHDL may encounter in blood stream, then changes in the mean particle size, and zeta potential were monitored (29).

Lyophilization of TC loaded sHDL

The optimized formula (F14) was freeze dried at -45°C/0.07 mbar in Christ (Alpha 1-2 LD plus, Germany) freeze drier. The resulting powder was stored in a tightly closed container for further analysis.

Powder x-ray diffraction (PXRD)

Pure TC, 5A, egg yolk lecithin and the lyophilized powder of F14 were analyzed by powder x-ray diffractometer (XRD-6000, Shimadzu) in order to determine whether TC was incorporated in a crystalline or amorphous state inside the nanoparticles. Samples were grinded into fine powders, packed individually into a sample holder and analyzed. The X-ray tube was Cu (1.54060 A) at 40 kV and 30 mA. The 20 scan range was performed from 4–60° (30).

Fourier transforms infrared (FTIR) spectroscopy

Briefly, samples of the pure TC, 5A, lecithin and lyophilized F14 were powdered and mixed with potassium bromide and pressed into discs. Then, FT-IR spectra were recorded over a frequency range of 4000–400 cm⁻¹ using FT-IR spectrometer (IRAffinity-1, Shimadzu, Japan) (31).

Statistical analysis

Data are expressed as the mean ± standard deviation. Statistical analysis was conducted using Microsoft excel. Unpaired t-test and one-way analysis of variance (ANOVA) were used to compare between two and multiple groups, respectively. \(P < 0.05 \) was considered significantly different.

Results and Discussion

Tamoxifen loaded- sHDL nanoparticles were prepared by the conventional thin film hydration method. The first step involves the formation of liposomal dispersion containing the lipids and the hydrophobic drug TC which is passively encapsulated in the lipid bilayer of the liposomes. Mixing TC-loaded liposomes with the mimetic peptide (5 A peptide) aided by sonication and thermal cycling facilitated the interaction between peptide and the lipid bilayers. Peptide monomers adsorb to the surface of liposomes, partition and insert themselves into the bilayer followed by stripping of lipid layers and assembly of sHDL. The phase transition temperature (\(T_m \)) of phospholipid is the temperature at which a lipid transit from the rigid gel ordered phase to the liquid crystalline state. At this point, the membrane will be in a disordered state with packing defects, thereby allowing the initial peptide insertion into the lipid bilayer (32).
Table 3. Physicochemical characterization of TC loaded sHDL nanodiscs

<table>
<thead>
<tr>
<th>Code</th>
<th>Particle diameter (nm)</th>
<th>PDI</th>
<th>Zeta Potential (mV)</th>
<th>Encapsulation efficiency (EE%)</th>
<th>Drug loading (DL%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>295.5±7.5</td>
<td>0.257±0.12</td>
<td>-51.97±0.8</td>
<td>98.17±1.3</td>
<td>26.13±0.32</td>
</tr>
<tr>
<td>F2</td>
<td>253.1±5</td>
<td>0.316±0.01</td>
<td>-74.17±1.0</td>
<td>98.83±2.0</td>
<td>26.3±0.25</td>
</tr>
<tr>
<td>F3</td>
<td>175.5±2.5</td>
<td>0.3±0.01</td>
<td>-22.98±0.78</td>
<td>99.75±1.7</td>
<td>26.5±0.17</td>
</tr>
<tr>
<td>F4</td>
<td>254.4±6.5</td>
<td>0.005±0.02</td>
<td>-55±0.58</td>
<td>98.93±0.9</td>
<td>23.7±0.16</td>
</tr>
<tr>
<td>F5</td>
<td>198.7±7.4</td>
<td>0.005±0.01</td>
<td>-45.16±1.9</td>
<td>99.9±0.8</td>
<td>23.74±0.1</td>
</tr>
<tr>
<td>F6</td>
<td>159.8±8.6</td>
<td>0.383±0.03</td>
<td>-48.3±1.7</td>
<td>97.9±1.2</td>
<td>23.5±0.24</td>
</tr>
<tr>
<td>F7</td>
<td>548.9±20.9</td>
<td>0.383±0.12</td>
<td>-1.62±0.45</td>
<td>97.5±1.2</td>
<td>19.5±0.32</td>
</tr>
<tr>
<td>F8</td>
<td>685.2±16.4</td>
<td>0.223±0.09</td>
<td>-6.28±0.2</td>
<td>96.2±2.0</td>
<td>19.24±0.2</td>
</tr>
<tr>
<td>F9</td>
<td>438.1±11.3</td>
<td>0.405±0.06</td>
<td>-47.94±0.57</td>
<td>99.5±1.2</td>
<td>19.9±0.38</td>
</tr>
<tr>
<td>F10</td>
<td>110.6±4.5</td>
<td>0.005±0.02</td>
<td>-16.27±0.7</td>
<td>96.3±0.9</td>
<td>23.1±0.16</td>
</tr>
<tr>
<td>F11</td>
<td>319.2±6.5</td>
<td>0.005±0.001</td>
<td>-44.91±1.21</td>
<td>97.2±1.2</td>
<td>23.3±0.24</td>
</tr>
<tr>
<td>F12</td>
<td>77.7±5.7</td>
<td>0.005±0.001</td>
<td>-30.5±1.3</td>
<td>89.2±1.3</td>
<td>17.84±0.32</td>
</tr>
<tr>
<td>F13</td>
<td>118.5±6.4</td>
<td>0.509±0.12</td>
<td>-16.2±1.0</td>
<td>95.5±0.9</td>
<td>17.2±0.08</td>
</tr>
<tr>
<td>F14</td>
<td>35.7±12.4</td>
<td>0.277±0.02</td>
<td>-48.4±0.5</td>
<td>96.5±0.7</td>
<td>9.65±0.1</td>
</tr>
</tbody>
</table>

Optimization and characterization of TC loaded sHDL nanodiscs

Synthetic HDL composition was optimized to match the size of the natural HDL. Three types of phospholipids were investigated including dipalmitoyl phosphatidylcholine (DPPC), dimyristoyl phosphatidylcholine (DMPC), and egg sphingomyelin (SM). The implemented phospholipids have different hydrocarbon chain length, degree of saturation and phase transition temperature (T_m). DPPC (T_m 41°C) and DMPC (T_m 23°C) are synthetic fully saturated phospholipids, while egg SM is a naturally occurring lipid with mostly saturated fatty acids and has T_m of 38°C. F1, F2 and F3 were prepared with different lipid component but at similar (lipid to peptide) ratio in order to examine the effect of the phospholipid composition on the average diameter of the prepared sHDL. The hydrodynamic diameters and size distribution (polydispersity index) of sHDL were determined by DLS. As shown in table 3, F3 (DMPC- sHDL) exhibited a significantly (p<0.05) smaller hydrodynamic diameter than F1(DPPC- sHDL) or F2(SM-sHDL). The obtained results were in a good agreement with a study by Gong et al, where the average diameter of the blank DMPC- sHDL (12.58±0.34 nm) was smaller compared to sHDL prepared from other phospholipids. The difference in diameters was explained by the different phase transition temperatures of lipids which affects the fluidity of the lipid bilayer and its interaction with the peptide. During the thermal cycling process, heating above the transition temperature of the lipids leads to fluidity of the lipid bilayer and facilitates the interaction with the peptide. Cooling, on the hand, renders the lipid membrane rigid and stable. Apparently, DMPC have a favorable transition temperature (T_m 23°C) for the synthesis of sHDL since it occurs near the room temperature, and thus allows for association with the peptide, meanwhile preventing its dissociation from the membrane. In formulas (F1-F9), the (lipids to peptide) ratio was varied from (2:1 to 1:1). Data depicted in table (3) and figure (2) revealed that altering the ratio from (2:1) to (1.5:1) caused a significant (p<0.05) decrease in the particles diameters. The obtained results imply the presence of more peptide to bind the lipid vesicles in (F4-F6) than in (F1-F3). However, further addition of peptide did not cause further size reduction; formulas (F7-F9) prepared with lipid to peptide ratio (1:1) exhibited significantly (p<0.05) increment in particle size compared to formulas prepared with (2:1) weight ratio, indicating the presence of large lipid vehicles and heterogeneity. Previous studies have reported that the ability of a apolipoprotein or a peptide to bind lipids depends on its state of self-association. Efficient binding is achieved when the protein exists as monomers. Therefore, at (1:1) ratio, the peptide molecules may exist as aggregates unable to adsorb and partition into lipid bilayers. The lipid-to-peptide weight ratio (1:5:1) was thus considered optimal for further investigation. Among the nine formulas, F6 had the smallest particle size (159.8±8.6 nm); however, the desirable particle size of the ideal targeted nanocarrier (less than 100 nm) was not achieved.
logical pH as 01:01. Surface charge res the hydrodynamic diameter. Measures the nanodiscs in solution, ...diameter (nm) 295.5 253.1 548.9 254.4 198.7 685.2 175.5 159.8 while DLS m...258.3 159.8 DPPC-sHDL DMPC-sHDL Figure 3. FESEM image of F10

Figure 2. The effect of the lipid to peptide ratio on the average diameter of sHDL

Next, F10 and F11 were prepared by adding SM and DPPC, respectively into DMPC-based sHDL, accompanied by decreasing DMPC content so that the ratio of lipid to peptide was constant at (1.5:1). Adding SM significantly (p<0.05) decreased the particles diameter from 159.8±8.6 nm to 110.6±4.5 nm while DPPC exhibited opposite effect. SM which consists of a sphingosine backbone and phosphocholine head group was reported by Rye et al to increase packing order of the acyl chains and head groups in POPC-based discoidal HDL, therefore enabled the formation of smaller particles (36,37). FESEM images of F10 showed the formation of nanodiscs as illustrated in figure (3).

Next, F10 and F11 were prepared by adding SM and DPPC, respectively into DMPC-based sHDL, accompanied by decreasing DMPC content so that the ratio of lipid to peptide was constant at (1.5:1). Adding SM significantly (p<0.05) decreased the particles diameter from 159.8±8.6 nm to 110.6±4.5 nm while DPPC exhibited opposite effect. SM which consists of a sphingosine backbone and phosphocholine head group was reported by Rye et al to increase packing order of the acyl chains and head groups in POPC-based discoidal HDL, therefore enabled the formation of smaller particles (36,37). FESEM images of F10 showed the formation of nanodiscs as illustrated in figure (3).

Next, F10 and F11 were prepared by adding SM and DPPC, respectively into DMPC-based sHDL, accompanied by decreasing DMPC content so that the ratio of lipid to peptide was constant at (1.5:1). Adding SM significantly (p<0.05) decreased the particles diameter from 159.8±8.6 nm to 110.6±4.5 nm while DPPC exhibited opposite effect. SM which consists of a sphingosine backbone and phosphocholine head group was reported by Rye et al to increase packing order of the acyl chains and head groups in POPC-based discoidal HDL, therefore enabled the formation of smaller particles (36,37). FESEM images of F10 showed the formation of nanodiscs as illustrated in figure (3).
Tamoxifen citrate loaded synthetic high-density lipoproteins

In vitro release of TC loaded sHDL nanodiscs

Tamoxifen citrate loaded sHDL nanoparticles are intended for intravenous administration; the optimized formulation should reveal minimum release of the encapsulated drug in blood circulation and maximum drug retention until they reaching cancer cells whereby the drug is transported into the cytoplasm of cancer cells through the non-aqueous “channel” of SR-B1\(^{(12,15)}\). In order to study the influence of the phospholipid type on the release pattern of the drug from nanoparticles, *in vitro* release study was performed for formulas F4, F5, and F6 prepared using DPPC, SM and DMPC, respectively at fixed lipid to peptide ratio (1.5:1).

It was found that different lipids produced a significant effect (P<0.05) on the release pattern of TC from sHDL nanodiscs as shown in figure (5). Formula F6 containing DMPC with short acyl chain length (14 carbon atoms), and low \(T_m\) (23°C) released the drug molecules faster than other formulas, mainly due to the fluidity of lipid bilayer at the physiological temperature (37°C). On the other hand, F4 containing DPPC with 16 carbon atoms in acyl chain and transition temperature (41°C) exhibited a slower release rate due to the rigidity against leakage of entrapped molecules into release medium\(^{(44)}\).

The release of TC from F5 was slower in comparison with other two formulas with 35.5 % of drug release by 24 hours. This can be attributed to the presence of hydrogen bond donors (N-H of the amide) and (O-H of shingosine); and hydrogen bond acceptors as C=O and phosphate group in sphingomyelin. As a result, sphingomyelin can form extensive intermolecular hydrogen bonding which increases the rigidity of the lipid bilayer\(^{(45)}\). Similar result was reported with docetaxel-sHDL nanodiscs, where SM-based sHDL retained more than 60 % of the drug followed by DPPC-based sHDL and DMPC-based sHDL\(^{(46)}\).

Kuai R et al prepared sHDL from combined phospholipids of low \(T_m\) and the produced sHDL showed a relatively slow release of the drug from sHDL. sHDL nanodiscs loaded with withalagolide were prepared using DMPC and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) as the lipid composition\(^{(23)}\). Besides, one of the clinically tested HDL products in dyslipidemia, ETC-642, is composed of ApoA-I mimetic peptide /DPPC/SM at ratio (1:1:1)\(^{(47)}\). Therefore, F10 and F11 were prepared by adding SM or DPPC to DMPC-based sHDL.

It was observed that F10 and F11 exhibited a significant (p<0.05) slower release rate when compared to the release rate from F6. The incorporation of SM or DPPC with high \(T_m\) into DMPC-based sHDL may increase the order in the bilayer membrane than that of the pure DMPC-sHDL. As a result, sHDL prepared from combined phospholipids were less permeable to drug molecules. Villalain et al studied the molecular interactions in phospholipids vesicles using differential scanning calorimetry (DSC) and FTIR. The mixture of SM and DPPC showed a transition temperature intermediate between those of individual lipids. In addition, the FTIR analysis showed that addition of SM decreased the motion and produced a more ordered acyl chains in the fluid state with respect to pure DPPC\(^{(48)}\).

Figure 4. The net charge versus pH of 5 A peptide (provided by the manufacturing company, GenScript)

Figure 5. Effect of lipid type on the *in vitro* release profiles of TC from sHDL nanodiscs in PBS pH 7.4 at 37°C. Each value represents the mean ± standard deviation (n=3)
Encapsulation efficiency (EE) and drug loading (DL)

Table 3 shows the values of EE and DL for sHDL nanodiscs (F1-F11). Sufficient encapsulation and drug loading are essential to obtain the desired therapeutic effect. The high EE and DL demonstrated by the sHDL nanodiscs could be attributed to the lipophilic nature of the drug (Log P 5.93) which enhances its encapsulation inside the lipid bilayer of sHDL.\(^{49}\)

Optimization and characterization of TC loaded-spherical sHDL

Formula F12 was prepared using egg yolk lecithin, FC, CO, and the mimetic peptide (5 A peptide) at lipid to peptide ratio of (2:1) and drug to carrier ratio of 0.2 (w/w). The nanoparticles exhibited mean diameter of 77.7±5.7 nm and a narrow polydispersity index (0.005), which is favorable attributes for targeted nanocarrier. However, the drug release from nanoparticles shown in figure (6) exhibited an initial burst release, where 33.67% of TC released in the first hour followed by a slower release pattern. The burst release implies inefficient delivery of the therapeutic moiety to the target tissue and systemic toxicity, therefore it is undesirable in targeted delivery.\(^{50}\) F13 was prepared by changing the lipid to peptide ratio to (1.5:1), resulting in a significant (P<0.05) increase in particle size, which may be due to the presence of peptide in aggregated state and the resulting in inefficient binding with phospholipids.\(^{34}\)

Next, Formula F14 was prepared to investigate the effect of other formulation parameters such as the drug to carrier ratio on the size and the drug release behavior from sHDL nanoparticles. With respect to the size of nanoparticles, a significant decrease (p<0.05) in the size of nanoparticles (from 77.7±5.7 nm to 35.7±12.4) nm was observed as the ratio decreased from 0.2 (w/w) to 0.1 (w/w). Because the drug molecules are encapsulated inside the hydrophobic core of nanoparticles, high drug to carrier ratio may cause the hydrocarbon chains of the phospholipid layer to become apart from each other.\(^{51}\) FESEM images of F14 (figure 7) showed spherical shape nanoparticles in a nanosized range with a good correlation to the measurements obtained by DLS analysis.

![FESEM images of F14](image)

Figure 7. FESEM images of F14

In vitro release profiles of F12 and F14 displayed in figure (6) revealed that decreasing the drug to carrier ratio from 0.2 (w/w) to 0.1 (w/w) caused a significant (p<0.05) decrease in the release rate of TC from nanoparticles. The obtained observation was consistent with sHDL- mimicking nanodiscs loaded with docetaxel at 1.6% and 3.2% (46). Finding the optimal (drug to carrier ratio) is critical in determining the release behavior from sHDL. Lipophilic drugs like TC are encapsulated within the lipid membrane, and due to the relatively small
space to accommodate drug molecules, formulation of high drug to lipid ratio may disrupt the membrane integrity and eventually causes drug leakage. The total lipid concentration in F14 was increased and this lead to a considerable reduction in the burst release from shDL nanoparticles (52). Similarly, EE and DL were significantly increased by altering the drug to carrier ratio. Adding drug molecules in high concentration may exceed the capacity of the lipid membrane to house drug molecules; such overload can cause damage and leakage of drug molecules from the lipid membrane, and consequently low loading and encapsulation efficiency (57).

Table 3 presents the values of ζ-potential of formulas (F12-F14). As discussed previously, the active drug, the phospholipid (egg yolk lecithin) and the peptide do not contribute to the surface charge whereas cholesterol and cholesteryl oleate do not carry ionizable functional groups. So, the surface charge was apparently acquired from adsorption of anions from the dispersion. F14 exhibited a value of (-48.4±0.5) mV, indicating a satisfactory stability attribute.

Analysis of the kinetics of drug release from shDL nanoparticles

The release data of TC from F14 were fitted by different kinetic models including first order, zero order, Higuchi and Korsmeyer-Peppas models. The highest regression coefficient (R^2) was found for zero-order model (table 4), suggesting near zero order controlled mechanism. The hydrophobic core of shDL nanoparticles restricted the drug molecules from the migration into the release medium. Furthermore, the peptide molecules at the surface of shDL served as an effective barrier against drug diffusion. The obtained result was consistent with the result reported for lovastatin loaded hyaluronic acid - decorated reconstituted high density lipoprotein (58).

<table>
<thead>
<tr>
<th>Model</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero-order model</td>
<td>0.9217</td>
</tr>
<tr>
<td>First-order model</td>
<td>0.8924</td>
</tr>
<tr>
<td>Higuchi model</td>
<td>0.8633</td>
</tr>
<tr>
<td>Korsmeyer–Peppas</td>
<td>0.5796</td>
</tr>
</tbody>
</table>

Colloidal stability in human plasma

The optimized formula F14 was incubated in human plasma to simulate the physiologic conditions that shDL may encounter in blood stream. The adsorption of plasma proteins on the surface of shDL may cause aggregation of the nanoparticles, increase in particle size, changes in surface charge and enhances their clearance. Furthermore, the adsorbed proteins and enzymes especially lecithin cholesterol acyltransferase (LCAT) enzyme can disrupt the lipid membrane of shDL nanoparticles, and eventually resulting in drug leakage. Therefore, monitoring the changes in mean particles size and zeta potential is important to evaluate the stability in the presence of plasma (54).

In this study, no sign of aggregation or sedimentation was observed after incubation for 24 hours with plasma. The mean particle size showed a significant (p<0.05) increase from 35.7±8.8 nm to 90.4±10 nm. In addition, the value of zeta potential has altered from -48.4±0.5 to -73.9±1.3 mV as a result of adsorption of plasma proteins. However, the particle size did not exceed 100 nm, indicating good stability under physiologic conditions (55).

Powder x-ray diffraction (PXRD)

The PXRD patterns of the raw materials TC, 5A, lecithin and the optimized formula F14 are shown in figure (8). TC exhibited sharp peaks indicated the crystalline nature of the drug. The main diffraction peaks of TC appeared at a diffraction angle of 2θ at 5.77°, 12.92°, 13.98°, 15.14°, 17.3°, 19.81°, 21.01°, 24.18° and 28.28°. Lecithin also showed sharp peaks indicating crystallinity while the halo in the spectrum of 5A reflects its amorphous nature. The absence of characteristic peaks of TC from the diffractograms of the optimized formula, F14, suggests a molecular distribution of drug molecule within the lipid membrane of shDL nanoparticles. Similar finding was reported for tamoxifen and resveratrol layer-by-layer nanoparticles (55). In addition, the diffraction peaks of the lecithin were weakened and shifted in F14 mainly due to formation of a less ordered crystals than in bulk lipids (56).
Tamoxifen citrate loaded synthetic high-density lipoproteins

Fourier transform infrared (FTIR) spectroscopy

Figure (9) demonstrates the characteristic bands of the TC, namely 3402.43 cm\(^{-1}\) due to N-H stretching vibrations, 1589.34 cm\(^{-1}\) assigned to N-H bending, 1238.3 cm\(^{-1}\) due to asymmetric C-O-C stretch, 1172.72 cm\(^{-1}\) due to C-N stretch and 1739.79 cm\(^{-1}\) assigned to carbonyl group of the citrate salt. It shows the aromatic C-H stretching band at 3020.53 cm\(^{-1}\), and the ring C-C stretching bands at 1504.48 cm\(^{-1}\) and 1438.9 cm\(^{-1}\). In addition, the spectrum shows the aliphatic asymmetric C-H stretching band at 2974.23 cm\(^{-1}\) and symmetric C-H stretching at 2870.08 cm\(^{-1}\). The spectrum of the prepared formula, F14, recorded a shift in N-H stretching band of TC to a lower frequency, suggesting the formation of hydrogen bonds with the carrier components. The absence of shift in peak positions for other principal peaks of the drug implies the absence of chemical interaction between the drug and excipients. FTIR spectra include bands, amide I (around 1655 cm\(^{-1}\)) due to carbonyl group of the peptide backbone, and amide II (around 1546 cm\(^{-1}\)) due to N-H bending. The aforementioned bands provide information on the helical conformation which promotes the lipid binding. Therefore, the appearance of these bands in the spectrum of the F14 indicates that the peptide association with the lipid membrane did not cause structural change to the peptide molecule (57).

Conclusion

From the results of this study, it was found that it is possible to develop and optimize synthetic high density lipoproteins (sHDL) loaded with TC. The optimized formula (F14) was prepared using (egg yolk
lecithin:FC:CO:5A) at 2:1 lipid to peptide ratio and 0.1 (w/w) drug to carrier ratio. The average diameter, PDI, release pattern and colloidal stability studies indicate the feasibility of the prepared sHDL nanoparticles as a targeted drug delivery system for intravenous administration.

Acknowledgments

The authors are thankful to department of Pharmaceutics/ Collage of Pharmacy-University of Mustansiriyah (www uomustansiriyah.edu.iq), Baghdad–Iraq. Authors are also grateful to the staff of Center of Nanotechnology and Advanced Research University of Technology for their assistance to accomplish this study.

Conflicts of Interest

Authors declare no conflict of interests.

References

