Elamipretide protects H9c2 Rats Cardiomyoblasts against Doxorubicin-Induced Disruption of Mitochondrial Quality Control by Restoration of Fusion and Fission Balance

Marwa A. Mahmoud\(^1\), Inam S. Arif\(^1\) and Muthanna I. Al-Ezzi\(^1\)
\(^1\)Department of Pharmacology and Toxicology, College of Pharmacy, Mustansiriya University, Iraq

*Corresponding author
Received 20/3/2023, Accepted 28/5/2023, Published 27/6/2024

Abstract
Doxorubicin (DOX) has been used to treat malignant diseases for over 40 years. The main constraint to its clinical applications is dose-dependent cardiotoxicity. Mitochondrial dysfunction is considered the main contributor and it involves disruption of mitochondrial quality control, mainly impaired fusion, and enhanced fission processes. Compounds that specifically target the mitochondria and restore fusion and fission balance are considered promising tools to protect or treat cardiomyopathy and thus could be investigated as a novel strategy to alleviate DOX-induced cardiac toxicity, one of which is elamipretide (ELAM). Methods: firstly, the tetrazolium bromide (MTT) assay was utilized to evaluate the cytotoxic effects of DOX and ELAM on the viability of the H9c2 cell line and to compare the effect of ELAM pre- and co-treatments on DOX-induced H9c2 cell damage. Secondly, western blot was utilized to investigate the effect of 72-hour DOX, 72-hour ELAM treatments, and 48-hour ELAM pre-treatment on the expression of the mitochondrial GTPases: mitofusin2 (MFN2) and dynamin-related protein1 (DRP1) that orchestrate mitochondrial fusion and fission respectively. Results: MTT assay revealed that DOX induces a significant reduction in cell viability which is both time and dose-dependent whereas ELAM has no significant effect on the viability of the relevant cells at most of the concentrations used. Additionally, western blot analysis showed a significant reduction in the expression of MFN2 in the DOX-treated group compared to the control (p***< 0.001) whereas the fission protein DRP1 was significantly upregulated in DOX-treated cells compared to the control (p**< 0.01) and normalization of both proteins was achieved when 10 µM ELAM introduced 48-hour prior to DOX therapy. Conclusion: ELAM could exert an interesting cardioprotective role against DOX-induced cardiotoxicity by restoration of mitochondrial fusion and fission balance.

Keywords: Doxorubicin, Elamipretide, MFN2, DRP1, H9c2 cell line

Elamipretide preserves mitochondrial quality control by restoring fusion and fission balance and was considered promising tool to protect or treat cardiomyopathy and thus could be investigated as a novel strategy to alleviate DOX-induced cardiac toxicity. The method includes both in vitro and in vivo studies. The in vitro study uses MTT assay and western blot analysis to evaluate the cytotoxic effects of DOX and ELAM on the viability of the H9c2 cell line and to compare the effect of ELAM pre- and co-treatments on DOX-induced H9c2 cell damage. The in vivo study uses E9 and I9C2 rats to investigate the effect of ELAM on H9c2 cardiomyoblasts and cardiac function. The results show that ELAM significantly improves cell viability and restores the expression of mitochondrial GTPases, suggesting a potential role in the protection or treatment of cardiomyopathy.

This work is licensed under a Creative Commons Attribution 4.0 International License.

How to cite: Elamipretide protects H9c2 Rats Cardiomyoblasts against Doxorubicin-Induced Disruption of Mitochondrial Quality Control by Restoration of Fusion and Fission Balance. Iraqi J Pharm Sci, Vol.33(2) 2024

Iraqi Journal of Pharmaceutical Sciences - P. ISSN: 1683 – 3597 - E. ISSN: 2521 - 3512

49
Introduction

Doxorubicin (DOX) is a powerful, widely employed chemotherapeutic agent that belongs to a class of anticancer drugs known as anthracyclines (ANTS)\(^\text{1,2}\). Unfortunately, the use of DOX in clinical settings is restricted by severe, permanent, and dose-dependent cardiac toxicity\(^\text{2}\). DOX-induced cardiotoxicity is a multifactorial process, in which several mechanisms are involved in its pathogenesis such as Topoisomerase IIβ poisoning, reactive oxygen species (ROS) generation, and mitochondrial impairment which is considered the major contributor\(^\text{3-5}\). Mitochondria are vital for all cell types and high energy-consuming cells are particularly sensitive to mitochondrial malfunction therefore, it is not surprising that primary mitochondrial dysfunction is linked to significant abnormalities in neurons and skeletal and cardiac muscles\(^\text{6}\).

Under healthy settings, mitochondria are kept in dynamic networks that are continuously elongating and dividing as a result of the balance between two opposing processes of fusion and fission resulting in the formation of a complicated set of connections known as mitochondrial dynamics\(^\text{7-9}\).

Mitochondrial fusion is the merging of the exterior and interior mitochondrial membranes of two mitochondria into one mitochondrion and it is orchestrated by nucleic-encoded dynamin-related GTPases known as mitofusins1 and 2 (MFN1 and MFN2) located on the exterior membrane, and optic atrophy1 (OPA1) on the interior membrane and intermembrane space\(^\text{7,10}\). In contrast, mitochondrial fission is characterized by the generation of two individual mitochondria via the division of a single mitochondrion\(^\text{11-13}\). The major regulator of mitochondrial fission is the GTPase protein belonging to the dynamin family known as dynamin-related protein1 (DRP1)\(^\text{14,15}\). Balanced mitochondrial dynamics are vital for cardiac homeostasis as it protects the myocardium from energy stress, therefore any disruption in this machinery appears to play a key role in the pathophysiology of numerous cardiovascular (CV) diseases\(^\text{14}\) such as DOX-induced cardiotoxicity\(^\text{16}\).

DOX-induced cardiotoxicity can potentially disrupt the expression of dynamically controlled proteins in mitochondria\(^\text{17}\). Du et al., (2019) stated that DOX increases mitochondrial fission in cardiomyocytes, as evidenced by increased phosphorylation of DRP1 and/or decreased phosphorylation of MFN2, and enhanced mitochondrial-dependent apoptosis\(^\text{18}\). These results revealed that DOX enhances mitochondrial fission while blocking mitochondrial fusion and enhancing the production of ROS\(^\text{16}\).

Because DOX has been demonstrated to change the levels of fusion and fission proteins, targeting these dynamic GTPases may be a feasible strategy for eliminating DOX-induced cardiomyopathy\(^\text{16}\). J. Huang et al., (2022) demonstrated that approaches aimed at enhancing mitochondrial function could be effective in ameliorating ANTs-induced cardiotoxicity. For example, the tetrapeptide elamipretide (ELAM) recovers cellular bioenergetics by specifically targeting the mitochondrial electron transport chain (ETC)\(^\text{19}\).

ELAM is an antioxidant peptide\(^\text{20}\) that concentrates at the inner mitochondrial membrane (IMM)\(^\text{21}\) at which it selectively binds to mitochondrial cardiolipin (CL), resulting in the restoration of mitochondrial bioenergetics\(^\text{22-24}\).

ELAM has the best characterization and efficiency among other members of the Szeto-Schiller (SS) peptides family that are presently being investigated for treating mitochondrial dysfunction. Various studies have demonstrated that SS peptides have great efficacy in recovering mitochondrial function in a variety of diseases, including cardiomyopathy and heart failure (HF)\(^\text{25,26}\).

ELAM can restores mitochondrial activity and enhances left ventricular contractile capacity when administered as long term therapy in dogs with failing hearts\(^\text{27}\). While there is no clear proof that ELAM can prevent ANTs-induced cardiomyopathy, the fact that mitochondrial dysfunction is a major contributor to ANTs’ cardiotoxicity implies that ELAM could be a promising therapy\(^\text{19}\).

The objective of this study is to investigate the impact of DOX therapy on cardiac mitochondrial quality control, mainly fusion and fission processes, and, to explore the potential effect of ELAM treatment in the restoration of dynamic balance between these processes in vitro by utilizing H9c2 rat cardiomyoblasts cell line as a model.

Materials and Methods

Preparation of drug stock solution

1mM Stock solution of both DOX and ELAM (purchased from Hyper-Chem®, China) was prepared by dissolving the drug powder in DMSO then the resultant solution was filtered and stored at -40°C. Cell culture and treatment. Rat H9c2 cells (supplied by Mustansiryah University/ College of Pharmacy / Department of Pharmacology and Toxicology) were cultured in 75 cm\(^2\) tissue culture flasks using Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 4.5 g/mL glucose, 1% Penicillin/Streptomycin solution 100X and 10% fetal bovine serum (Capricorn scientific, Germany) and kept in a humidified incubator at a temperature of...
37°C and CO2 concentration of 5%(28,29). The growth of the cells was observed daily under the microscope and was passaged when reaching 80-90% confluency(29). In a 96-well plate, the cells were seeded at a density of 5000 cells/well, and the plates were kept in a humidified incubator(30). When reaching 80-90% confluency, the drug treatments were added for 24,48, and 72 hours. From the stock solutions that were previously prepared, different DOX (0, 0.01, 0.02, 0.04, 0.09, 0.18, 0.37, 0.75, 1.5, 3, and 6 µM) and ELAM (0, 0.001, 0.01, 0.1, 1, 10, 25, 50, 100, 250 and 500 µM) concentrations were prepared with fresh medium and added to the wells in three technical replicates after removing the old medium.

Measurement of cell viability

The viability of H9c2 cells was determined using MTT assay (purchased from HIMEDIA®, India). 20µL of MTT solution was added to each well after removing the old medium then, the plates were incubated for 4 hours in a humidified incubator. Next, MTT solution was discarded and 100µL of DMSO was added(30). The absorbance of the wells was measured via Bio-Tek® microplate reader at a wavelength of 490nm(31,32). Data were collected from 3 independent experiments and the results were expressed as % cell viability of the control.

Assessment of the impact of ELAM pre- and co-treatments on DOX-induced H9c2 cells damage. The relevant cells were seeded at a density of 5000 cells/well in 96 well plates with 100µL fresh medium, and the plates were incubated in a humidified incubator. When the cells became semi-confluent, they were divided into 3 groups: control group (cells incubated with only fresh medium for 72 hours), pre-treatment group (H9c2 cells were treated with ELAM (10 µM, obtained from the dose-response curve) for 24, 48, and 72 hours then DOX (0.3 µM, obtained from the dose-response curve) was added after discarding the old medium, and the cells were incubated for further 72 hours in a humidified incubator) and Co-treatment group (relevant cells exposed to DOX (0.3 µM) plus ELAM (10 µM) concurrently and incubated for 72 hours). Finally, cell viability was measured by MTT assay.

Western blot

Proteins from H9c2 cells that were exposed to DOX and ELAM treatments were extracted by adding RIPA lysis buffer (Elabscience®, USA). The cell lysate was centrifuged and then, quantified by a BCA assay kit (Elabscience®, USA). Next, equal amounts of proteins were separated by 8-10% SDS-PAGE (Elabscience®, USA). A semi-dry transfer system (Bio-Rad Laboratories, Singapore) was used to transport protein bands from gel to PVDF membranes which were then blocked in 5% skim milk in TBS-T for 1 hour at room temperature. After blocking, the membranes were incubated overnight with the primary antibodies against MFN2 (1:1000, Elabscience®, USA), DRP1(1:1000, Elabscience®, USA), and GAPDH (1:1000, Elabscience®, USA) at 4° C under mild agitation. Next, the blots were washed 3 times/15 minutes with TBS-T buffer and incubated with species-specific secondary antibody conjugated with horseradish peroxidase (1:5000, Elabscience®, USA) for 1 hour at room temperature with gentle agitation. Then, the protein bands were visualized using a chemiluminescent detection kit (Elabscience®, USA) with ChemiDoc TM XRS+ imaging system (Bio-Rad Laboratories, France) and analysed with ImageJ software. The experiment was performed in duplicates.

Statistical analysis

Data were expressed as mean ±SEM, and analysed by GraphPad Prism 8.0.2 software (GraphPad Software Inc, USA). Analysis of Variance (one-way ANOVA) followed by Tukey's multiple comparison tests was used for comparison between experimental groups. Statistical significance was defined as p-value <0.05.

Results and Discussion

DOX-induced dose and time-dependent reduction in H9c2 cell viability

Figure (1) represents the dose-response curve of Dox. The viability of the relevant cells was significantly reduced as the DOX concentration increased, indicating that DOX suppresses H9c2 viability in a concentration-dependent manner. Additionally, the concentration-dependent inhibition of DOX on cellular viability became more apparent as exposure duration increased. For example, after 24 hours of exposure to DOX, the maximum DOX concentration (6 µM) caused 39% of cellular death, whereas, after 72 hours of exposure to the same concentration, this effect was increased to 78%. Thereafter, a 72-hour interval was considered for the calculation of the half-maximal inhibitory concentration (IC50) and also for subsequent experiments. IC50 of DOX was calculated using GraphPad Prism software by applying the nonlinear regression analysis and determined to be 0.3 µM.
Elamipretide recovers DOX-induced disruptions of mitochondrial fusion and fission

Figure 1. Dose-response curve for DOX. H9c2 cells were treated with Dox concentrations (0.01-6 µM) for 24, 48 and 72 hours. Data presented as mean ± SEM of 3 biological independent replicates (n=3).

ELAM produces no significant difference in the viability of H9c2 cells.

Figure (2) shows that at low doses, ELAM slightly enhanced cellular viability which was determined by measuring the mitochondrial activity of the living cells via MTT assay. However, ELAM concentrations ≥ 50 µM significantly suppressed cellular viability in comparison to non-treated cells. The decline in cellular viability following a high dose of ELAM may arise from the fact that ELAM reduces the production of ROS (33) which are to a certain level necessary for many physiological activities within the cell such as defending against external insults and acting as redox messengers (34). For this research, a 10 µM concentration of ELAM was selected to be used for subsequent experiments.

Figure 2. Dose-response curve for ELAM. H9c2 cells were treated with ELAM concentrations (0.001-500 µM) for 24, 48 and 72 hours. Data presented as mean ± SEM of 3 biological independent replicates (n=3).

Figure 3. Effect of ELAM pre- and co-treatments on DOX-induced H9c2 cytotoxicity. H9c2 cells were treated with 10 µM ELAM for 24, 48 and 72 hours prior to Dox treatment of 0.3 µM for a further 72 hours. In Co-treatment, both drugs were given concurrently for 72 hours. Significant compared to the DOX group (p* < 0.05). Data presented as mean ± SEM of 4 biologically independent experiments (n=4).

ELAM pre-treatment recovers DOX-induced downregulation of MFN2 expression. Figure (4) illustrated that DOX-induced significant reduction in MFN2 expression compared to the control (p***< 0.001). In contrast, a significant increase in the expression of MFN2 compared to the DOX-treated group (p****< 0.0001) was achieved when 10 µM ELAM was introduced 48 hours prior to DOX therapy. Several studies have revealed that DOX modifies the level of fusion/fission proteins in diverse ways but the suppression in MFN2 expression is thought to be the most notable phenotype among these investigations (35,37). MFN2 is directly regulated by peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) (38) which is a transcriptional co-activator that is normally overexpressed in the myocardium and plays a role in the pathology of cardiac failure (39). In cardiomyocytes treated with DOX, PGC-1α expression, and activity are both suppressed which is thought to be a typical sign of heart dysfunction (40). PGC-1α suppression is caused by ANT-induced topoisomerase IIβ inactivation which is considered the primary trigger of cardiotoxicity with these drugs (39). Ding et al., (2022) pointed out that restoration of MFN2 recovers mitochondrial fusion and thereby reduces mitochondrial dysfunction and cardiotoxicity induced by DOX (36). According to Bu et al., (2017) and Wang et al., (2021), Silent information regulator 1 (SIRT1) is the key upstream regulator of PGC-1α that controls MFN2 expression (41,42). SIRT1...
activity is reduced in cardiomyocytes treated with DOX(53) since SIRTs enzymatic activity is directly linked to the availability of nicotinamide adenine dinucleotide (NAD+) in cells(44). The cellular availability of NAD+ is strongly linked with mitochondrial activity because NADH is oxidized to NAD+ in the mitochondria therefore, it is not surprising that different cell types have shown a decrease in NAD+ levels in response to treatment with ANTs(43). Zhao et al., (2017) revealed that ELAM was highly effective at raising the NAD+/NADH ratio and enhancing mitochondrial quality(45). The elevation in NAD+/NADH ratio results in the activation of SIRT1(46) which can protect the myocardium from oxidative stress by enhancing the antioxidant defense system(47). As reported earlier, SIRT1 is an important regulator of PGC-1α, therefore, it is not surprising that ELAM produces a significant increase in PGC-1α levels in dogs with induced heart failure receiving three months of therapy with ELAM(48). Since PGC-1α controls MFN2 expression(38,49) therefore, upregulation of PGC-1α enhances the expression of mitochondrial fusion protein MFN2(50,52).

ELAM pre-treatment alleviates DOX-induced upregulation of DRP1 expression

According to the findings depicted in Figure 4, DRP1 expression was significantly increased in the DOX-treated group compared to the control (p**< 0.01). However, when 10 µM ELAM was administered 48 hours before DOX therapy, there was a significant decline in the expression of DRP1 relative to the DOX-treated group (p**< 0.01). As stated by Ding et al., (2022), DRP1 expression is induced by DOX therapy, which results in excessive mitochondrial fission(56). Under stressful circumstances, the dynamic balance in the mitochondria shifts towards fission to eliminate the severely damaged portions of mitochondrial network thereby leading to mitochondrial fragmentation and eventually cell death(53,54). Mitochondrial fission is initiated when DRP1 translocated from the cytosol into mitochondria(55) this requires DRP1 to be activated via phosphorylation at the Ser616 site which is promoted by upstream kinases, such as extracellular signal-regulated kinase 1/2 (ERK1/2) that is activated during DOX-induced cardiac damage(54,56) as a result of oxidative stress induction and production of potentially fatal ROS(57) that acts as a mediator that activates ERK1/2 pathway(58,59). The ERK pathway is the first cascade of the mitogen-activated protein kinase (MAPK) signaling pathway(58) which is considered the key upstream regulator of fission in mitochondria(59). ELAM-mediated suppression of mitochondrial fission may be related to the fact that ELAM reduces oxidative stress(60) and lowers the generation of harmful ROS(61-63) by binding to and stabilization of CL on the IMM(61). Reduction in ROS production impairs the MAPK pathway(57) which as noted earlier, is responsible for controlling the phosphorylation and activation of the fission-mediating protein DRP1(64).

Figure 4. Effect of 48-hour ELAM pre-treatment on MFN2 protein expression in H9c2 cells treated with 0.3 µM DOX for 72 hours. A) Western blot analysis of the cell lysate with GAPDH utilized as an internal control. B) Protein bands were quantified by ImageJ 1.53t software, standardized with GAPDH, and expressed as normalization of control. One-way ANOVA was applied to measure the significant difference between groups (p***< 0.001, p****< 0.0001).

ELAM pre-treatment alleviates DOX-induced upregulation of DRP1 expression

According to the findings depicted in Figure 5, DRP1 expression was significantly increased in the DOX-treated group compared to the control (p**< 0.01). However, when 10 µM ELAM was administered 48 hours before DOX therapy, there was a significant decline in the expression of DRP1 relative to the DOX-treated group (p**< 0.01). As stated by Ding et al., (2022), DRP1 expression is induced by DOX therapy, which results in excessive mitochondrial fission(56). Under stressful circumstances, the dynamic balance in the mitochondria shifts towards fission to eliminate the severely damaged portions of mitochondrial network...
thereby leading to mitochondrial fragmentation and eventually cell death\(^{(53,54)}\). Mitochondrial fission is initiated when DRP1 translocated from the cytosol into mitochondria\(^{(55)}\) this requires DRP1 to be activated via phosphorylation at the Ser616 site which is promoted by upstream kinases, such as extracellular signal-regulated kinase 1/2 (ERK1/2) that is activated during DOX-induced cardiac damage\(^{(54,56)}\) as a result of oxidative stress induction and production of potentially fatal ROS\(^{(57)}\) that acts as a mediator that activates ERK1/2 pathway\(^{(56,58)}\). The ERK pathway is the first cascade of the mitogen-activated protein kinase (MAPK) signaling pathway\(^{(58)}\) which is considered the key upstream regulator of fission in mitochondria\(^{(59)}\). ELAM-mediated suppression of mitochondrial fission may be related to the fact that ELAM reduces oxidative stress\(^{(60)}\) and lowers the generation of harmful ROS\(^{(61-63)}\) by binding to and stabilization of CL on the IMM\(^{(61)}\). Reduction in ROS production impairs the MAPK pathway\(^{(57)}\) which as noted earlier, is responsible for controlling the phosphorylation and activation of the fission-mediating protein DRP1\(^{(64)}\).

Conclusion

The ability of elamipretide to stabilize cardiac mitochondria and recovers mitochondrial quality control in H9c2 cardiomyoblasts offers a novel strategy for protection against doxorubicin-induced cardiac mitochondrial toxicity by restoring the dynamic balance between mitochondrial fusion and fission.

Acknowledgments

The authors would like to express their gratitude to Mustansiriyyah University/ College of Pharmacy for authorizing and supporting this research.

Conflict of Interest

All authors declare that there is no conflict of interests.

Funding

No funding was received for conducting this research.

Ethics Statements

This article was approved by the ethical committee of the Pharmacology and Toxicology Department/College of Pharmacy/ Mustansiriyah University.

Authors Contribution

Inam S. Arif and Marwa A. Mahmoud designed the methodology. Marwa A. Mahmoud conducted the methodology, data analysis and writing the original manuscript. Inam S. Arif performed writing-editing and publication. Muthanna I. Al-Eazzi handled writing-review and publication.

References

5. Kadowaki H, Akazawa H, Ishida J, Komuro I. Cancer Therapeutics-Related Cardiac

Elamipretide recovers DOX-induced disruptions of mitochondrial fusion and fission