Possible Effects of Vitamin D3 and Levofloxacin on Selected Hematology Parameter of Rats

Abbas Muslim Mhaibes*1 and Farah Kais Abdul-Wahab2

*2nd Scientific Conference for Postgraduate Students Researches.
1 Ministry of Health and Environment, Missan Health Directorate, Missan, Iraq.
2 Department of Pharmacology and Toxicology, College of Pharmacy, University of Baghdad, Iraq.

Abstract
Vitamin D is a fat-soluble vitamin with antioxidant and DNA protecting properties. Levofloxacin is a member of the fluoroquinolone drug class, its broad-spectrum bactericidal effect affects both Gram-positive and Gram-negative bacteria.

The goal of the study is to analyze the hematology analysis in rats that received levofloxacin and show the preventive impact of vitamin D3 by analyzing the hematology parameters: packed cell volume (PCV), mean corpuscular hemoglobin concentration (MCHC), hemoglobin (HB), red blood cell (RBC), mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), WBC, differential WBC, and Platelets.

The study included 42 rats divided into 6 groups each group 7 rats. group I negative control: healthy animals received normal saline 0.9%.

- group II: received levofloxacin LFX dose of 50mg/kg/day (IP) for fourteen days.
- group III: received LFX 100mg/kg/day (IP) for fourteen days.
- group IV: received vitamin D3 500 IU/day orally for twenty one days.
- group V: received vitamin D3 500 IU/day orally for twenty one days and levofloxacin 50 mg/kg/day IP injected at day 8 for fourteen days.

Blood samples taken from rats treated with levofloxacin, showed a decrease in the values of RBC, HB, PCV, MCH, MCHC, as well as a decrease in the total white blood cells, then returned approximately to normal levels in the group V and group VI.

From the results, the study concludes that some hematological changes caused by levofloxacin ameliorated by preventive impact of vitamin D3 by analyzing the hematology parameters: packed cell volume (PCV), mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), hemoglobin (HB), red blood cell (RBC), mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), WBC, differential WBC, and Platelets.

Keywords: Levofloxacin, vitaminD3, Hematology, Anemia, Rats.

*Corresponding author E-mail: abbasmmph@Gmail.com
Received: 30/3/2023
Accepted: 7/5/2023

Irani Journal of Pharmaceutical Sciences
Introduction

Fluoroquinolones are a class of antibiotics derived from the basic structure of nalidixic acid, which was discovered in the early 1960s (1). Fluoroquinolone generations have been created as a result of additional quinoline molecular replacement (2). This class of medications is required for the treatment of severe gram-negative infections (3), levofloxacin: a third-generation fluoroquinolone (4), fluoroquinolones are one of the antibiotic types that are most frequently prescribed to both humans and animals. For a number of infections such as genitourinary infections and lung infections, this class of antibiotics is the first-line treatment; Levofloxacin is broad spectrum antibiotics that are delivered or re-distributed to these places by the blood and then reach therapeutic levels in many bodily secretions including articular fluids. These medications are therefore highly pertinent to clinical practice today (5) compared to other antibiotic medication classes; fluoroquinolones are more likely to cause serious side effects. The majority of side effects are mild to severe (6); levofloxacin has been documented to aggravate myasthenia gravis, rhabdomyolysis, and spontaneous tendon ruptures (7)(8). Due to the serious side effects associated with fluoroquinolones such antibiotics are unsuitable in elderly, pediatric, pregnant, or lactation individuals unless for very severe bacterial infections (9)(10). To evaluate potential hematological alterations that might be seen after giving rats levofloxacin antibiotics this study was conducted.

Vitamin D3 fat soluble vitamin that has antioxidant and DNA-protective properties and it can control the maturation of erythrocytes which controls the production of red blood cells (RBCs), as well as iron metabolism and hemoglobin synthesis (11)(12). In addition, vitamin D has a number of physiological processes (13). Clinical evidence suggests that vitamin D may play a role in erythropoiesis. There are many clinical studies that look at how 1-25(OH)D deficiency affects blood hemoglobin (Hb) levels (14). Anemia and decreased hemoglobin levels according to Patel et al. are independently linked to 25 hydroxyvitamin D and 1-25 dihydroxy vitamin D deficiency in people with chronic kidney disease (15). The fact that anemia and vitamin D appear to be related, the exact mechanism is unknown. However, the majority of studies examining the relationship between renal anemia levels, vitamin D supplementation, and deficiency emphasize the pervasive importance of inflammation in the underlying mechanisms (16)(17).

The vitamin D receptor (VDR), which is expressed by immune cells, is involved in the control of innate and adaptive immunity. Study conducted in vitro and in vivo have shown that calcitriol decreases cytokine production Interleukin-10 (IL-10) is released lymphocytically when VDR is activated, and this increases the production of inflammatory cytokines in stromal and accessory cells (18), while also having anti-inflammatory and proliferative effects on erythroid progenitors. Another theory is that calcitriol directly activates erythroid progenitors because vitamin D has been shown to have an impact on bone marrow function (19). Additionally, the active form of vitamin D-1-25 hydroxyvitamin D (1-25(OH)D2) is present in bone marrow at levels that are hundreds of times higher than in plasma. According to research by Aucella et al. giving patients with end stage renal disease (ESRD) 1-25(OH)2D boosted burst-forming unit erythroid proliferation. Both in vitro and in vivo studies have shown that calcitriol has a direct impact on the proliferation of erythroid precursors and that it has a synergistic effect with epoetin alfa (20).

Vitamin D receptors have been discovered in a variety of non-renal target tissues including bone marrow. Restoring normal tissue 25(OH)D levels may provide a sufficient substrate for local 1-25(OH)2D synthesis in hematopoietic tissues via extra-renal tissue activity of the enzyme 1-alpha hydroxylase. It has been demonstrated that hematopoietic cells which include erythroid precursors, fibroblast, endothelial cells, lipid-laden cells, and macrophages have significantly higher levels of 25(OH)D and 1-25(OH)2D than bone marrow plasma (21). High local concentrations of 1-25(OH)2D in hematopoietic regions may then result in direct paracrine activation of erythroid precursor cells.

Objective

This study is designed to study the effects of levofloxacin and vitamin D3 on selected hematology parameters in rats.

Materials and Methods

Chemicals and Drugs

Levofloxacin 750mg/30ml from (Bader pharma/ Egypt) vitamin D3(10000IU/ml) oral drop from (ABIOGEN Pharm a Italy); 0.9% Normal Saline 100ml I.V Infusion (Pioneer Iraq).

Experimental animals

42 white Albino rats of both sexes weighing 150-250 grams in a climate-controlled environment. The rats were housed in polycarbonate cages and kept in a room with a humidity of 60±5 percent and a set temperature of 22 c° commercial pellets were given to the rats and a 12/12-hour light-dark cycle was maintained throughout the experiment. The study was approved by the Scientific- and the Ethical Committees of the College of Pharmacy/ University of Baghdad.

Experimental protocol

Following two weeks of adaptation rats were randomly placed into six groups (seven rats/each group). group I negative control: healthy
animals received 0.5ml normal saline + group II positive control: received levofloxacin (LFX) dose of 50mg/kg/day intraperitoneally (IP) for fourteen days^22^, group III positive control: received LFX 100mg/kg/day intraperitoneally for fourteen days^23^, group IV negative control: received vitamin D3 500 IU/day orally by oral gavage for twenty one days, group V received vitamin D3 500 IU/day orally for twenty one days and levofloxacin 50 mg/kg/day IP injected at day 8 for fourteen days, group VI received vitamin D3 500 IU/day orally and levofloxacin 100 mg/kg/day IP injected at day 8 for fourteen days.

Laboratory Analysis

After the course of treatment was complete, blood was drawn from the rats by slitting their carotid arteries. Two milliliters of blood were then drawn and placed in an EDTA tube with rolling to prevent blood clots. The blood was then sent for evaluation of analysis [red blood cell (RBC) counts, hemoglobin, hematocrit, mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), white blood cell (WBC) counts, differential white blood cells and platelet numbers] by using Auto Hematology Analyzer (BC-30-Mindray-China)^25^.

Statistical analysis

Data were presented as mean and standard deviation values (mean ±SD). The computerized IBM SPSS statistics 25.0 application was used to examine the data. One-way analysis of variance (ANOVA) and Kruskal Wallis is used to assess whether the differences between different groups are statistically significant When P value was less than 0.05 (P<0.05) statistically significant differences were taken into consideration. Graph Pad Prism 7.04 was used to develop the Figures.

Results

The results of hematological changes can be summarized in Figure 1 and Table 1. Regarding the levels of (PCV, HB, MCHC) declare non-significant difference changes (P>0.05) in groups of rats that were injected with levofloxacin (50mg/kg/day) (Group II) compared to the levels in the negative control (Group I) rats. Similarly non-significant (P>0.05) was observed in (PCV, HB, MCHC) level in group of rats IP injected with levofloxacin (100mg/kg/day) (Group III) compared to the corresponding level in the negative control (Group I) rats. In addition there were no statistical significance difference was observed (P>0.05) in rats of (Group IV) compared to negative control (Group I) rats. Moreover (Group V) showed statistically non-significant elevation in (PCV-HB-MCHC) levels (P>0.05) compared to the corresponding level in rats treated with levofloxacin(50mg/kg/day) alone (Group II). Furthermore there is a non-significant elevation in (Group VI) showed non-significant difference compared to the corresponding level in levofloxacin100mg-treated alone (Group III) and Group V showed non-significant elevation compared to Group VI.

![Figure 1](image1.jpg)

Figure 1. The difference in PCV, HB, MCHC level across the study groups showed non-significant (p>0.05) difference among the groups according to ANOVA. A: show difference in PCV, B: show difference in HB, C: show difference in MCHC.
-Value expressed in identical small letters (a) are non-significantly different (P>0.05).

In addition, the levels of RBC, MCV, MCH show a significant difference (P<0.05) of rats that were treated with a dose of levofloxacin (50mg/kg/day) once daily (Group II) for R.B.C but non-significant difference for MCV, MCH compared to the corresponding level in control Group I rats. Similarly significant reduction (P<0.05) was observed in RBC, MCH except for MCV level in group of rats IP injected with a dose of levofoxacin (100mg/kg/day) once daily Group III compared to the corresponding level in negative control group Group I rats as shown in Table 1, Figure 2. Group IV show that there were statistically non significance differences observed (P<0.05) in (R.B.C and significant difference in(MCV> MCH) levels in rats of (500IU/rat/day) of vitamin D3 compared to negative control (Group I) rats. Animals treated with (500IU) vitamin D3 and levofloxacin (50mg/kg) once a day Group V showed statistically non- significant elevation in RBC, MCV and MCH levels (P>0.05) compared to the corresponding level in rats treated with levofloxacin(50mg/kg/day) alone Group II. Table 1, Figure 2 Group VI demonstrate a significant difference in MCV, MCH and non-significant in RBC of rats receiving (500IU) of vitamin D3 and levofloxacin (100mg/kg/day) once daily compared to the corresponding level in levofloxacin 100mg-treated alone (Group III).

Moreover, group V showed non-significant elevation compared with group VI.

According to Table 1 revealed a significant reduction in (neutrophil, monocyte) and non-significant with (lymphocyte, eosinophil) (P<0.05) of rats treated with Group VI compared to Group III; furthermore Group V showed significant reduction in neutrophil, lymphocyte and elevation of monocyte and eosinophil compared to group VI.
Values expressed in non-identical small letters (a, b, c) are significantly different (P< 0.05).

The levels of Platelets and W.B.C showed non-significant difference (P> 0.05) in Group II (reduction platelets and elevation WBC) comparing with the corresponding level in the negative control Group I rats in addition non-significant difference (P>0.05) was observed in platelets· WBC in Group III compared to the corresponding level in the negative control (Group I) rats as shown in table 1 and Figure 4. In (Group IV) there were no statistically significance differences observed (P>0.05) in levels of platelets and WBC in comparison with the negative control (Group I) rats.

Table 1, Animals treated in (Group V) showed statistically non-significant reduction in W B C and elevation in platelets levels (P>0.05) compared to the corresponding level in the (Group II) as show in Table 1. According to Table 1 showed non-significant elevation in platelets and reduction WBC. (P>0.05) of rats with the (Group VI) compared to (Group III) rats.

Figure 4. The difference in the platelets· W.B.C level across the study groups (non-significant difference p-value > 0.05 among the study group) N: show difference in platelets· O: show difference in W.B.C.

-Values expressed in identical small letter (a) non-significant difference.
Table 1. The hematology analysis in different groups of rats

<table>
<thead>
<tr>
<th></th>
<th>Group I N=7</th>
<th>Group II N=7</th>
<th>Group III N=7</th>
<th>Group IV N=7</th>
<th>Group V N=7</th>
<th>Group VI N=7</th>
</tr>
</thead>
<tbody>
<tr>
<td>P.C.V%</td>
<td>39.99±3.18 a</td>
<td>35.27±4.86 a</td>
<td>33.96±3.46 a</td>
<td>39.41±3.14 a</td>
<td>38.94±5.56 a</td>
<td>33.52±4.784 a</td>
</tr>
<tr>
<td>HB g/dl</td>
<td>14.27±1.19 a</td>
<td>12.05±1.59 a</td>
<td>11.25±1.15 a</td>
<td>14.63±0.71 a</td>
<td>13.01±1.64 a</td>
<td>11.643±1.0245 a</td>
</tr>
<tr>
<td>MCHC pg</td>
<td>353.29±7.95 a</td>
<td>322.84±9.97 a</td>
<td>317.71±11.64 a</td>
<td>351.00±15.78 a</td>
<td>344.73±13.93 a</td>
<td>338.29±14.874 a</td>
</tr>
<tr>
<td>R.B.C µL</td>
<td>7095000±1070000 a</td>
<td>6465000±28327 b</td>
<td>6160000±3045000 b</td>
<td>68100±1420000 a</td>
<td>6755000±12975500 c</td>
<td>6545000±1160000 c</td>
</tr>
<tr>
<td>MCV FL</td>
<td>53.700±4.8 a</td>
<td>51.700±5.6 a</td>
<td>52.900±3.3 a</td>
<td>53.750±4.3 b</td>
<td>53.700±3.8 a</td>
<td>52.950±3.8 c</td>
</tr>
<tr>
<td>MCH pg</td>
<td>19.35±1.9 a</td>
<td>±1.8 17.65 a</td>
<td>17.18±2.3 b</td>
<td>20.30±1.9 c</td>
<td>18.82±4.0 a</td>
<td>17.60±2.1 d</td>
</tr>
<tr>
<td>Neutrophil µL</td>
<td>23.52±15.8 a</td>
<td>28.71±16.2 a</td>
<td>53.61±13.8 a</td>
<td>25.84±10.9 a</td>
<td>27.55±18.3 b</td>
<td>29.17±15.8 c</td>
</tr>
<tr>
<td>Lymphocyte µL</td>
<td>69.00±23.1 a</td>
<td>77.64±14.9 a</td>
<td>82.52±35.7 a</td>
<td>64.04±8.4 a</td>
<td>46.58±10.5 b</td>
<td>67.84±10.8 a</td>
</tr>
<tr>
<td>Monocyte µL</td>
<td>8.74±3.6 a</td>
<td>6.94±2.9 a</td>
<td>6.90±2.4 a</td>
<td>10.11±1.9 b</td>
<td>9.42±2.1 c</td>
<td>7.27±2.5 c</td>
</tr>
<tr>
<td>Eosinophil µL</td>
<td>1.44±4.6 a</td>
<td>1.61±3.9 a</td>
<td>1.70±4.3 a</td>
<td>4.44±5.1 b</td>
<td>6.35±6.0 c</td>
<td>2.71±1.6 a</td>
</tr>
<tr>
<td>Platelets µL</td>
<td>556429±242500 a</td>
<td>457286±305250 a</td>
<td>475714±435250 a</td>
<td>524571±283000 a</td>
<td>679286±787250 a</td>
<td>641286±581000 a</td>
</tr>
<tr>
<td>W. B. C µL</td>
<td>11571.4±3175 a</td>
<td>12028.6±3750 a</td>
<td>11714.3±4150 a</td>
<td>11200±3925 a</td>
<td>9514.29±3800 a</td>
<td>9542.86±4050 a</td>
</tr>
</tbody>
</table>

N= Number of animals in each group.
- Each value represent as Mean ±standard deviation (M±SD) for normally distributed and median ±interquartile range for not normally distributed .
- Values expressed in identical small letter (a) non- significant difference
- Values expressed in non- identical small letters (a, b, c and d) are significantly different (P<0.05).
Discussion

Different drugs effects on hematological parameters by different mechanisms and this study was designed to highlight the effects of vitamin D3 on hematological parameters. As shown in Table 1- In this study, the hematometry of rats treated with levofloxacin revealed significant (p<0.05) decline of the measured hematological parameters the (PCV, HB and MCHC) level declare non-significant difference (P>0.05) level of rats in Group II compared with the negative control (Group I) rats. Similarly, non-significant (P>0.05) decline was observed in (PCV, HB and MCHC) level in Group III compared to corresponding level in negative control Group I rats. In addition, there were no statistical significance differences observed (P>0.05) in (PCV, HB, MCHC) levels in rats of Group IV compared to control (Group I) rats. Animals treated with Group V showed statistically non-significant elevation in (PCV, HB and MCHC) levels (P>0.05) compared to the rats treated with Group II. Furthermore, there are a non-significant elevation in (PCV, HB and MCHC). (P>0.05) of rats in Group VI showed non-significant difference compared to the Group III and Group V showed non-significant elevation compared to Group VI. These results consistent with that observed in previous studies (26)(27). Although levofloxacin has been proven to have certain negative effects on blood parameters in rats, there is no obvious mechanism by which it reduces levels of packed cell volume (PCV), hemoglobin (HB) and mean corpuscular hemoglobin concentration (MCHC). Some studies show that the decrease in PCV, HB and MCHC may be attributable to levofoxacin’s ability to inhibit bone marrow (28). Bone marrow suppression is defined as a decrease in the synthesis of blood cells in the bone marrow which can lead to a drop in the amount of red blood cells, resulting in a fall in PCV, HB, and MCHC (29). Other research suggests that levofloxacin may cause oxidative stress in the body, resulting in the loss of red blood cells and a drop in PCV, HB, and MCHC levels. This technique involves the production of reactive oxygen species (ROS) which can damage and destroy red blood cells’ cell membranes (30). While several studies have demonstrated levofloxacin’s effects on blood parameters in rats, more research is needed to validate the mechanism of action and comprehend the therapeutic implications of these findings (31). According to previous studies different drugs such as cephalosporins, penicillins, and certain fluoroquinolones may be linked with anemia (32)(33). The (RBC, MCV, MCH) declare a significant reduction difference (P<0.05) of rats that were treated with (Group II) for (RBC) but non-significant difference for (MCV, MCH) compared to negative control (Group I) rats.

In addition, significant reduction (P<0.05) was observed in (R.B.C, MCH) except MCV level in Group III compared to the negative control group Group I rats and these results consistent with previous studies (34)(35). Group IV declare that there were statistical non-significance difference was observed (P<0.05) in (RBC) and significant difference in (MCV), MCH levels in Group IV compared to negative control Group I rats. animals treated with (Group V) showed statistically non-significant elevation in (RBC, MCV and MCH levels (P>0.05) compared to rats treated with Group II. Group VI demonstrate a significant difference in (MCV and MCH) and non-significant in (RBC) compared to the Group III Furthermore, group V showed non-significant elevation compared with group VI. (HB, MCV, MCHC and MCH) even though there were attempts at recovery between treatment groups V and Group VI after 21 days of treatment except (eosinophil and monocyte) was increased may be because allergic reaction for eosinophil and because blood disorder(anemia or bleeding) for monocyte). Drug-mediated anemia has been theorized to have lower RBC, HB, and PCV together with a comparable fall in PLT count (thrombocytopenia). This change in the erythrocytic parameters may be caused by levofoxacin’s inhibitory effect on erythropoiesis in the bone marrow (36). This study shows that the levofoxacin-induced anemia may take longer to go away.

Therefore, it is advisable to use with caution when administering these antibiotics to individuals who already have anemia. Furthermore, the animals declare non-significant elevated difference (P>0.05) of rats (neutrophil, lymphocyte, monocyte and eosinophil) level in Group II comparing negative control Group I rats in addition no significant (P>0.05) was observed in (neutrophil, lymphocyte, monocyte, eosinophil) level in Group III compared to negative control Group I rats. However, Group IV resulted in statistically significant differences (P<0.05) in (Neutrophil, Lymphocyte, Monocyte, and Eosinophil) levels compared to Group I rats negative control group. Animals treated in Group V showed statistically significant reduction in (Monocyte and Eosinophil) levels (P<0.05) and non-significant reduction in (neutrophil and lymphocyte) compared to Group II. Group VI revealed a significant reduction in (neutrophil and monocyte) and non-significant with (lymphocyte and eosinophil) (P<0.05) of rats compared to Group III. Furthermore, group V showed significant reduction in neutrophil, lymphocyte and elevation of monocyte and eosinophil compared with group VI these results consistent with previous studies (37) but inconsistent with some studies (38) authors mentioned all blood parameters decline except lymphocyte and eosinophil after levofoxacin treatment (25mg). In these study all blood parameters decline when dose of levofoxacin increased to (100mg/kg/day).
level of (platelets and W.B.C) showed non-significant difference (P>0.05) of rats that were treated in Group II (reduction platelets and elevation WBC) compared to corresponding level in negative control Group I rats maybe due to inflammation. Similarly non-significant difference (P>0.05) was observed in (platelets and WBC) level in Group IV compared to negative control Group I rats. In Group IV with (500IU/rat/day) of vitamin D3 there were no statistically significant difference was observed (P>0.05) in levels of (platelets and WBC) in comparison to group control (Group I) rats.

Animals treated with Group V showed statistically non-significant reduction in (WBC) and (elevation in platelets) levels (P>0.05) compared to level in rats with levofoxacin (50mg/kg/day) alone Group II while animals showed non-significant elevation in platelets and reduction WBC (P>0.05) of rats with Group VI compared to Group III and group V had higher platelets and lowest WBC in contrast group VI these results consistent with previous studies.\(^{(39,40)}\)

Additionally levofoxacin which decreased the rats platelet counts during treatment may cause mild blood coagulation abnormalities.\(^{(41)}\) The thrombocytopenia seen in this study could be caused by either enhanced drug-mediated destruction or decreased platelet synthesis as seen in bone marrow suppression.\(^{(42)}\) Given that the rats utilized in this investigation were healthy and had normal blood parameters this study concluded that extended treatment of levofoxacin may result in anemia as well as thrombocytopenia.\(^{(43,44)}\) So because the effect of levofoxacin on hematology parameters a complete hemogram is preferred before and during the treatment this will allow the practitioner to make an informed decision about whether to discontinue treatment or closely monitor the patient during the course of treatments to ensure safety. Levofoxacin side effects were mitigated by oral vitamin D treatment prior to the drug for 21 consecutive days (groups V and VI) as seen by the noticeably higher erythroocyte count, Hb content, PCV\(^{\%}\), MCV, MCH\(^{\%}\), and PLT count compared to rats subjected to levofoxacin (Group I), enhancements in erythrogram and leukogram following treatment of vitamin D to rats receiving levofoxacin may be attributable to the antioxidant properties of vitamin D3.\(^{(45)}\)

In addition vitamin D has improved erythropoiesis inhibited premature erythrocyte lysis prevented polyunsaturated fatty acid oxidation in the erythrocyte membrane and increased the amount of erythroid precursor units forming colonies.\(^{(46,47)}\) Levofoxacin has been linked to changes in a variety of blood parameters in rats. There are some possible mechanisms that could explain these effects: Levofoxacin can suppress the generation of blood cells in the bone marrow resulting in a decrease in the number of red blood cells (RBC) which can result in a drop in mean corpuscular volume (MCV) and mean corpuscular hemoglobin (MCH). Similarly it might induce a drop in platelet count which can lead to thrombocytopenia and may be by Oxidative stress: Levofoxacin has been demonstrated to cause oxidative stress in the body which can damage and destroy the cell membranes of red blood cells resulting in a drop in RBC count and hemoglobin levels\(^{(49)}\) or may be effects on Immune system stimulation: Levofoxacin has the ability to stimulate the immune system resulting in an increase in the production of white blood cells (WBC) such as neutrophils, lymphocytes, monocytes, and eosinophils. The drug’s capacity to stimulate immune cells such as macrophages and natural killer cells is suggested to be responsible for this impact.\(^{(50)}\)

Inflammation: Levofoxacin has been reported to raise levels of pro-inflammatory cytokines such as interleukin-1 beta (IL-1) and tumor necrosis factor-alpha (TNF-) which can lead to an increase in WBC count and contribute to anemia development.\(^{(51)}\)

Vitamin D has a variety of effects on the body including blood parameters in rats. Here are some potential pathways for how vitamin D may increase blood parameters while decreasing particular cell types may be by:

- **Erythropoiesis stimulation:** It has been demonstrated that vitamin D stimulates the production of erythropoietin, a hormone that regulates the creation of red blood cells (RBC) in the bone marrow. This can raise RBC count, hemoglobin (Hb) levels as well as mean corpuscular volume (MCV) and mean corpuscular hemoglobin concentration (MCH).\(^{(52)}\)

- **Inflammation inhibition:** Vitamin D has anti-inflammatory characteristics and has been proven to decrease the production of pro-inflammatory cytokines such as interleukin-1 beta (IL-1) and tumor necrosis factor-alpha (TNF-). This can result in a reduction in the number of white blood cells (WBC) which include neutrophils, lymphocytes, monocytes, and eosinophils.\(^{(53)}\)

- **Immune system modulation:** Vitamin D can modulate the immune system by modulating immune cell synthesis and function. It might increase the production of anti-inflammatory cytokines like interleukin-10 (IL-10) while suppressing the production of pro-inflammatory cytokines like TNF. This can result in a decrease in the quantity of WBC and the aforementioned subtypes.\(^{(54)}\)

- **Regulation of calcium homeostasis:** Vitamin D is needed for calcium homeostasis which is required for RBC synthesis and maturation. It can improve calcium absorption from food and induce calcium release from bone tissue. This may result in increased RBC synthesis and maturation which may enhance blood parameters.\(^{(55)}\)
Conclusions
The findings of this study demonstrated that the some hematological changes caused by levofloxacin treatment ameliorate by vitamin D3.

Acknowledgments
I am very grateful for all laboratory staff of Salem Rashid al-obaidi specialist for pathological analysis for their valuable. I would like to thanks all those people who helped me to complete my work without being able to mention them by names.

Funding
The authors received no financial support for the research, authorship and/or publication of this article.

Ethics Statements
This study was approved by the Ethical and Scientific Committee of the College of the Pharmacy/University of Baghdad at march 2022.

Conflict of interest
The author(s) declare that there is no conflict of interest

Author contributions
Pharmacist Abbas Muslim Mhaibes: contributed to data gathering, analysis, practical (follow the procedure) and written parts of the study. abbasmmph@Gmail.com
Dr. Farah Kais Abdul-Wahab; gave final approval and agreement for all aspects of the study, supervision, revision and rearrangement. farah77kais@yahoo.com

References
15. Turkkan TA, Al-Rawi JR. Vitamin D level and telogen hair loss: A Case control study. Journal of the Faculty of Medicine Baghdad. 2021 Sep 26;63(3).

41. Turkan TA, Al-Rawi JR. Vitamin D level and telogen hair loss: A Case control study. Journal of the Faculty of Medicine Baghdad. 2021 Sep 26;63(3).

46. Turkan TA, Al-Rawi JR. Vitamin D level and telogen hair loss: A Case control study. Journal of the Faculty of Medicine Baghdad. 2021 Sep 26;63(3).

47. Castillo-Castellanos F, Ramirez L, Lomelí E, zmiz1a zebrafish mutants have defective erythropoiesis altered expression of autophagy genes and a deficient response to vitamin D. Life Sci. 2021;284:119900.

