Characterization of Alginate with Natural Polymers Combination for Drug Encapsulation

Authors

DOI:

https://doi.org/10.31351/vol31iss2pp150-159

Keywords:

Synergistic interactions, alginate, pectin, carrageenan, polymers viscosity

Abstract

Alginate is one of the natural biopolymers that is widely used for drug formulations, combination of alginate with other polymers, such as gum acacia, pectin, and carrageenan can increase mechanical strength, therefore, can reduce leakage of the encapsulated active pharmaceutical ingredient from the polymer matrix. Interaction of alginate and these polymers can occur via intermolecular hydrogen bonds causing synergism, which is determined from the viscosity of polymer mixture.

Alginate was combined with gum acacia/pectin/carrageenan in different blending ratios (100:0, 75:25, 50:50, 25:75, and 0:100) with and without addition of CaCl2. The synergism effect is obtained from the design of experimental (DoE), and calculation the percentage value of viscosity deviation viscosity synergism index, then the strength of gel was analyzed. The interaction between two polymers was observed using FTIR spectroscopy.

In distilled water, the synergistic effect was found in the combination of alginate-carrageenan at ratios 25:75 and 50:50. Otherwise, in CaCl2 solution, synergistic effect appears in alginate-gum acacia (75:25), alginate-pectin (50:50 and 75:25), and alginate-carrageenan (50:50 and 75:25). The synergistic effect and strength of gel polymers increased, with the addition of CaCl2.

 

 

How to Cite

1.
Annisa V, Sulaiman TNS, Nugroho AK, Nugroho AE, Roman Kutsyk. Characterization of Alginate with Natural Polymers Combination for Drug Encapsulation. Iraqi Journal of Pharmaceutical Sciences [Internet]. 2022 Dec. 24 [cited 2025 Jan. 18];31(2):150-9. Available from: https://bijps.uobaghdad.edu.iq/index.php/bijps/article/view/1572

Publication Dates

References

Barra PA, Márquez K, Gil-Castell O, Mujica J, Ribes-Greus A, Faccini M. Spray-drying performance and thermal stability of L-ascorbic acid microencapsulated with sodium alginate and gum Arabic. Molecules, 2019; 24(16).

Nair RM, Bindhu B, V L R. A polymer blend from Gum Arabic and Sodium Alginate - preparation and characterization. Journal of Polymer Research, 2020; 27(6).

Fagury HS, Talib MA, Rayis OA, El-Hag KH. Extending Cloud Stability of Tamarindus indica L. Juice Using Sodium Alginate and Gum Arabic During Storage in the Refrigerator. Pp. 173–180 in Gum Arabic. Elsevier, 2018.

Tsai F-H, Kitamura Y, Kokawa M. Effect of gum arabic-modified alginate on physicochemical properties, release kinetics, and storage stability of liquid-core hydrogel beads. Carbohydrate Polymers, 2017; 174:1069–1077.

Li J, Zhai J, Dyett B, Yang Y, Drummond CJ, Conn CE. Effect of gum arabic or sodium alginate incorporation on the physicochemical and curcumin retention properties of liposomes. Lwt, 2020:110571.

Chopra M, Bernela M, Kaur P, Manuja A, Kumar B, Thakur R. Alginate/gum acacia bipolymeric nanohydrogels-Promising carrier for Zinc oxide nanoparticles. International Journal of Biological Macromolecules, 2015; 72:827–833.

Raguvaran R, Manuja BK, Chopra M, Thakur R, Anand T, Kalia A, Manuja A. Sodium alginate and gum acacia hydrogels of ZnO nanoparticles show wound healing effect on fibroblast cells. International Journal of Biological Macromolecules, 2017; 96:185–191.

Manuja A, Raguvaran R, Kumar B, Kalia A, Tripathi BN. Accelerated healing of full thickness excised skin wound in rabbits using single application of alginate/acacia based nanocomposites of ZnO nanoparticles. International Journal of Biological Macromolecules, 2020; 155:823–833.

Hassani A, Mahmood S, Enezei HH, Hussain SA, Hamad HA, Aldoghachi AF, Hagar A, Doolaanea AA, Ibrahim WN. Formulation, characterization and biological activity screening of sodium alginate-gum Arabic nanoparticles loaded with curcumin. Molecules, 2020; 25(9).

Ataide J, Cefali L, Rebelo M, Spir L, Tambourgi E, Jozala A, Chaud M, Silveira E, Gu X, Gava Mazzola P. Bromelain Loading and Release from a Hydrogel Formulated Using Alginate and Arabic Gum. Planta Medica, 2017; 83(10):870–876.

Nayak AK, Das B, Maji R. Calcium alginate/gum arabic beads containing glibenclamide: Development and in vitro characterization. International Journal of Biological Macromolecules, 2012; 51(5):1070–1078.

Li M, Li H, Li X, Zhu H, Xu Z, Liu L, Ma J, Zhang M. A Bioinspired Alginate-Gum Arabic Hydrogel with Micro-/Nanoscale Structures for Controlled Drug Release in Chronic Wound Healing. ACS Applied Materials and Interfaces, 2017; 9(27):22160–22175.

Bekhit M, Sánchez-González L, Ben Messaoud G, Desobry S. Encapsulation of Lactococcus lactis subsp. lactis on alginate/pectin composite microbeads: Effect of matrix composition on bacterial survival and nisin release. Journal of Food Engineering, 2016; 180:1–9.

Downloads

Published

2022-12-24