Chitosan- (Prunus avium) Gum Nanocapsules Loaded with Orange Peel Extract

Nanocapsules Loaded with Orange Peel Extract


  • Tahani alidee Food Science Department- Faculty of Agriculture- Damascus University Food Technology Department-General Commission for Scientific Agricultural Research
  • Hoda Habbal Food Science Department- Faculty of Agriculture- Damascus University
  • Francois Karabet Chemistry Department- Faculty of Science- Damascus University



Orange peel extract, encapsulation, chitosan, Prunus avium gum


The orange peel extract (OE) is an additive material that has been used widely as a natural antioxidant source and bioactive compounds in Pharmaceutical and food sector. The poor stability and degradation of this extract were considered problems in the industry. New technologies have been introduced recently to prevent this degradation as encapsulation.

In this work, chitosan (CS) and Prunus avium gum (PG) were proposed as promising based materials for encapsulation OE via ionic gelation method.  The effect of different ratios of CS: PG and CS: OE on encapsulation efficiency (EE %) and the capsules size were investigated. The EE% of CS-PG was ranged from 60.63 to 87.06 % with a size range of 40 to 95nm according to Atomic Force Microscope (AFM) images. The formulation with the highest EE% was chosen to be characterized by FTIR, scanning electron microscope (SEM), and in vitro release study. The FTIR spectra confirm the cross-linking between the NH3+ group in CS and the negative functional group (-COO-) in PG. According to SEM micrographs, the capsules showed a spongy porous structure. The in vitro release study indicated that the release of OE from CS-PG matrix in the acidic and neutral medium was 55.15 and 52.67% respectively after incubation for 240 minutes. This study found that CS-PG can be used as an effective wall matrix for encapsulating OE and delivering it into the gastrointestinal system.


1. Suleria, H. A., Barrow, C. J., and Dunshea, F. R. (2020). Screening and characterization of phenolic compounds and their antioxidant capacity in different fruit peels. Foods. 9(9): 1206.‏
2. M’hiri, N., Ioannou, I., Ghoul, M., and Boudhrioua, N. M. (2014).Extraction methods of citrus peel phenolic compounds. Food Reviews International. 30(4):265-290.
3. Parashar, S., Sharma, H., & Garg, M. (2014). Antimicrobial and antioxidant activities of fruits and vegetable peels: A review. Journal of Pharmacognosy and Phytochemistry, 3(1).‏
4. Grgić, J., Šelo, G., Planinić, M., Tišma, M., & Bucić-Kojić, A. (2020). Role of the encapsulation in bioavailability of phenolic compounds. Antioxidants, 9(10), 923.
5. Ammala, A. (2013). Biodegradable polymers as encapsulation materials for cosmetics and personal care markets. International journal of cosmetic science, 35(2): 113-124.‏
6. Hussein, A. M., Kamil, M. M., Lotfy, S. N., Mahmoud, K. F., Mehaya, F. M., & Mohammad, A. A. (2017). Influence of nano-encapsulation on chemical composition, antioxidant activity and thermal stability of rosemary essential oil. Am J Food Technol, 12, 170-177.
7. Tavakoli, H., Hosseini, O., Jafari, S. M., & Katouzian, I. (2018). Evaluation of physicochemical and antioxidant properties of yogurt enriched by olive leaf phenolics within nanoliposomes. Journal of Agricultural and food chemistry, 66(35), 9231-9240
8. Walia, N., Dasgupta, N., Ranjan, S., Ramalingam, C., & Gandhi, M. (2019). Methods for nanoemulsion and nanoencapsulation of food bioactive. Environmental Chemistry Letters, 17(4), 1471-1483.
9. Luo, Y., & Wang, Q. (2014). Recent development of chitosan-based polyelectrolyte complexes with natural polysaccharides for drug delivery. International journal of biological macromolecules, 64, 353-367.‏
10. Avila-Sosa, R., Palou, E., Munguía, M. T. J., Nevárez-Moorillón, G. V., Cruz, A. R. N., and López-Malo, A. (2012). Antifungal activity by vapor contact of essential oils added to amaranth, chitosan, or starch edible films. International journal of food microbiology, 153(1-2): 66-72.
11. Mirhosseini, H., and Amid, B. T. (2012). A review study on chemical composition and molecular structure of newly plant gum exudates and seed gums. Food Research International. 46(1): 387-398.‏
12. Fathi, M., Mohebbi, M., & Koocheki, A. (2016). Introducing Prunus cerasus gum exudates: Chemical structure, molecular weight, and rheological properties. Food Hydrocolloids. 61:946-955.‏
13. Malsawmtluangi, C., Thanzami, K., Lalhlenmawia, H., Selvan, V., Palanisamy, S., Kandasamy, R., & Pachuau, L. (2014). Physicochemical characteristics and antioxidant activity of Prunus cerasoides D. Don gum exudates. International Journal of Biological Macromolecules. 69: 192-199.‏
14. Sharma, A., Bhushette, P. R., and Annapure, U. S. (2020). Purification and physicochemical characterization of Prunus domestica exudate gum polysaccharide. Carbohydrate Polymer Technologies and Applications. 1: 100003.‏
15. Al-idee, T., Habbal, H., Karabt, F., & Alzubi, H. (2020). Study of some functional properties and antioxidant activity of two types of cherry trees (Prunus avium) gum exudates grown in Syria. Iraqi Journal of Science, 13-22.‏
16. Avadi, M. R., Sadeghi, A. M. M., Mohammadpour, N., Abedin, S., Atyabi, F., Dinarvand, R., & Rafiee-Tehrani, M. (2010). Preparation and characterization of insulin nanoparticles using chitosan and Arabic gum with ionic gelation method. Nanomedicine: Nanotechnology, Biology and Medicine, 6(1), 58-63.‏
17. Salarbashi, D., Tafaghodi, M., Fathi, M., Aboutorabzade, S. M., & Sabbagh, F. (2021). Development of curcumin‐loaded Prunus armeniaca gum nanoparticles: Synthesis, characterization, control release behavior, and evaluation of anticancer and antimicrobial properties. Food Science & Nutrition. 9:6109–6119.
18. Doost, A. S., Muhammad, D. R. A., Stevens, C. V., Dewettinck, K., & Van der Meeren, P. (2018). Fabrication and characterization of quercetin loaded almond gum-shellac nanoparticles prepared by antisolvent precipitation. Food Hydrocolloids, 83: 190-201.‏
19. Rajabi, H., Jafari, S. M., Rajabzadeh, G., Sarfarazi, M., & Sedaghati, S. (2019). Chitosan-gum Arabic complex nanocarriers for encapsulation of saffron bioactive components. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 578: 123644.‏
20. Hu, B., Pan, C., Sun, Y., Hou, Z., Ye, H., Hu, B., & Zeng, X. (2008). Optimization of fabrication parameters to produce chitosan− tripolyphosphate nanoparticles for delivery of tea catechins. Journal of agricultural and food chemistry, 56(16): 7451-7458.‏
21. Abreu, F. O., Oliveira, E. F., Paula, H. C., & de Paula, R. C. 2012. Chitosan/cashew gum nanogels for essential oil encapsulation. Carbohydrate polymers, 89(4):1277-1282.‏
22. Ebrahimzadeh, M. A., Hosseinimehr, S. J., Hamidinia, A., and Jafari, M. (2008). Antioxidant and free radical scavenging activity of Feijoa sallowiana fruits peel and leaves. Pharmacologyonline, 1(1): 7-14.‏
23. Bhushette, P.R. Annapure, U.S. (2017).Comparative study of Acacia nilotica exudate gum and acacia gum, Int. J. Biol. Macromol. 102: 266–271.
24. Akinluwade, K. J., Oyatogun, G. M., Alebiowu, G., Adeyemi, I. O., & Akinwole, I. E. (2017). Synthesis and characterization of polymeric nanoparticles formed from cowry shells and acacia gum extracts. Journal of Advances in Biology and Biotechnology, 14(1), 1-8.‏
25. Yadav, R., Kumar, D., Kumari, A., and Yadav, S. K. (2014). Encapsulation of catechin and epicatechin on BSA NPs improved their stability and antioxidant potential. EXCLI journal. 13: 331.‏
26. Mahmoud, K. F., Ibrahim, M. A., Mervat, E. D., Shaaban, H. A., Kamil, M. M., and Hegazy, N. A. (2016). Nano-encapsulation efficiency of lemon and orange peels extracts on cake shelf life. American Journal of Food Technology. 11(3): 63-75.‏
27. Mahdavi, S. A., Jafari, S. M., Assadpoor, E., & Dehnad, D. (2016). Microencapsulation optimization of natural anthocyanins with maltodextrin, gum Arabic and gelatin. International journal of biological macromolecules. 85: 379-385.‏
28. Yousefi, M., Khanniri, E., Shadnoush, M., Khorshidian, N., & Mortazavian, A. M. (2020). Development, characterization and in vitro antioxidant activity of chitosan-coated alginate microcapsules entrapping Viola odorata Linn. extract. International Journal of Biological Macromolecules. 163: 44-54.‏
29. Madene, A., Jacquot, M., Scher, J., & Desobry, S. (2006). Flavour encapsulation and controlled release–a review. International journal of food science & technology, 41(1), 1-21.‏
30. Hosseini, S. F., Zandi, M., Rezaei, M., & Farahmandghavi, F. (2013). Two-step method for encapsulation of oregano essential oil in chitosan nanoparticles: preparation, characterization and in vitro release study. Carbohydrate polymers, 95(1):50-56.‏
31. Kadare, P., Maposa, P., Dube, A., and Maponga, C. C. (2014). Encapsulation of isoniazid in chitosan-gum Arabic and poly (lactic-co-glycolic acid) PVA particles to provide a sustained release formulation. J. Pharm. Pharmacol, 1, 01-06.‏
32. Kaur, M., Malik, B., Garg, T., Rath, G., & Goyal, A. K. (2015). Development and characterization of guar gum nanoparticles for oral immunization against tuberculosis. Drug delivery, 22(3), 328-334.‏
33. Dong, F., and Wang, Y. (2016). Encapsulation of vitamin C by a double-layer zein/chitosan structure with improved stability and controlled release. Int Nanomed Nanosurg, 2(1).‏
34. Vahidmoghadam, F., Pourahmad, R., Mortazavi, A., Davoodi, D., and Azizinezhad, R. (2019). Characteristics of freeze-dried nanoencapsulated fish oil with whey protein concentrate and gum arabic as wall materials. Food Science and Technology. 39: 475-481.‏
35. Akdeniz, B., Sumnu, G., and Sahin, S. (2017). The effects of maltodextrin and gum arabic on encapsulation of onion skin phenolic compounds. Chemical Engineering Transactions, 57: 1891-1896.‏
36. Paula, H. C., Sombra, F. M., Abreu, F. O., & Paul, R. (2010). Lippia sidoides essential oil encapsulation by angico gum/chitosan nanoparticles. Journal of the Brazilian Chemical Society, 21(12), 2359-2366.‏
37. Tavares, L., Barros, H. L. B., Vaghetti, J. C. P., & Noreña, C. P. Z. (2019). Microencapsulation of garlic extract by complex coacervation using whey protein isolate/chitosan and gum Arabic/chitosan as wall materials: influence of anionic biopolymers on the physicochemical and structural properties of microparticles. Food and Bioprocess Technology. 12(12): 2093-2106.‏
38. Kuck, L. S., & Noreña, C. P. Z. (2016). Microencapsulation of grape (Vitis labrusca var. Bordo) skin phenolic extract using gum Arabic, polydextrose, and partially hydrolyzed guar gum as encapsulating agents. Food chemistry, 194, 569-576.‏
39. Hussain, S. A., Hameed, A., Nazir, Y., Naz, T., Wu, Y., Suleria, H. A. R., & Song, Y. (2018).Microencapsulation and the characterization of polyherbal formulation(phf) rich in natural polyphenolic compounds. Nutrients, 10(7): 1-25.‏
40. Alehosseini, A., Gómez-Mascaraque, L. G., Ghorani, B., & López-Rubio, A. (2019). Stabilization of a saffron extract through its encapsulation within electrospun/electrosprayed zein structures. Lwt, 113: 108280.‏
41. De Oliveira, J. L., Campos, E. V. R., Pereira, A. E., Nunes, L. E., Da Silva, C. C., Pasquoto, T., Lima, R., Smaniotto,G., Polanczyk,R.A and Fraceto, L. F. (2018). Geraniol encapsulated in chitosan/gum Arabic nanoparticles: A promising system for pest management in sustainable agriculture. Journal of agricultural and food chemistry, 66(21): 5325-5334.
42. Espinosa-Andrews, H., Sandoval-Castilla, O., Vázquez-Torres, H., Vernon-Carter, E. J., & Lobato-Calleros, C. (2010). Determination of the gum Arabic–chitosan interactions by Fourier Transform Infrared Spectroscopy and characterization of the microstructure and rheological features of their coacervates. Carbohydrate Polymers, 79(3), 541-546.