Formulation Variables Effect on Gelation Temperature of Nefopam Hydrochloride intranasal in Situ Gel (Conference Paper) #

Authors

  • Ammar Alabdly College of pharmacy
  • Hanan J. Kassab Department of Pharmaceutics, College of Pharmacy, University of Baghdad, Iraq-Baghdad

DOI:

https://doi.org/10.31351/vol31issSuppl.pp32-44

Keywords:

Nefopam Hydrochloride, Thermosensitive in situ gel, Poloxamer 407, Poloxamer 188

Abstract

Nefopam (N.F.) HCl is a non-narcotic centrally-acting, non-opioid benzoxazocine analgesic to relieve acute and chronic pain. It exhibits low bioavailability (about 36%) due to its first-pass degradation in the liver.

Intranasal administration has been used as a new route for targeting active brain sites and enhancing the bioavailability of N.F. HCl bypassing hepatic metabolism.

In situ gel of N.F. HCl was prepared by the cold method using different concentrations of Poloxamer 407, Poloxamer 188, HPMC K4M, Carbapol 934, and Hyaluronic acid polymers.

The results show that identification tests are superimposed with references, solubility study shows that N.F. HCl is suitable to be administered intranasally; Compatibility studies reveal incompatibility of Nefopam HCl with HPMC K4M and Carbapol 934; meanwhile, no interaction with Methylcellulose and Hyaluronic acid.

In conclusion, the obtained results revealed the incredible ability of the produced N.F. HCl intranasal in situ gel is intended to enhance drug bioavailability bypassing the metabolizing effect of the liver that N.F. HCl is facing when given orally.

How to Cite

1.
Alabdly A, J. Kassab H. Formulation Variables Effect on Gelation Temperature of Nefopam Hydrochloride intranasal in Situ Gel (Conference Paper) #. Iraqi Journal of Pharmaceutical Sciences [Internet]. 2023 Feb. 16 [cited 2025 Jan. 20];31(Suppl.):32-44. Available from: https://bijps.uobaghdad.edu.iq/index.php/bijps/article/view/2000

Publication Dates

References

Moinuddin S, Hasan Razvi S, Fazil M, Mustaneer Akmal M, Syed Moinuddin C, Shanawaz Uddin M, et al. Nasal drug delivery system: A innovative approach. Pharma Innov J . 2019;8(3):169–77.

Deruyver L, Rigaut C, Lambert P, Haut B, Goole J. The importance of pre-formulation studies and of 3D-printed nasal casts in the success of a pharmaceutical product intended for nose-to-brain delivery.Advanced Drug Delivery Reviews. Elsevier B.V.; 2021; 175.

Alkufi HK, Kassab HJ. Formulation and evaluation of sustained release sumatriptan mucoadhesive intranasal in-situ gel. Iraqi J Pharm Sci. 2019 ; 28(2):95 –104.

Sweetman SC. Martindale: The complete drug reference. 38th ed. Sweetman SC, editor. vol 1, p117. London: Pharmaceutical Press;

Nefopam hydrochloride | DrugBank Available from: https:// go. Drugbank .com/ salts/ DBSALT 002173

Abou-Taleb HA, Khallaf RA, Abdel-Aleem JA. Intranasal niosomes of nefopam with improved bioavailability: Preparation, optimization, and in-vivo evaluation. Drug Des Devel Ther. 2018;12:3501–16.

Durrieu G, Olivier P, Bagheri H, Montastruc JL, Centers and the FN of P. Overview of adverse reactions to nefopam: an analysis of the French Pharmacovigilance database. Fundam Clin Pharmacol . 2007;21(5):555–8.

Feng Z, Ju L, Yu T, Du Y, Sun X. Imidazolium-based ionic liquid surfactants as pseudostationary in combination with a chiral selector in micellar electrokinetic chromatography. Anal Bioanal Chem. 2019 ;411(17) :3849–56.

Keller LA, Merkel O, Popp A. Intranasal drug delivery: opportunities and toxicologic challenges during drug development. Drug Deliv Transl Res. 2022;12(4):735–57.

McMartin C, Hutchinson LEF, Hyde R, Peters GE. Analysis of structural requirements for the absorption of drugs and macromolecules from the nasal cavity. J Pharm Sci. 1987;76(7):535–40.

Abouhussein DMN, Khattab A, Bayoumi NA, Mahmoud AF, Sakr TM. Brain targeted rivastigmine mucoadhesive thermosensitive In situ gel: Optimization, in vitro evaluation, radiolabeling, in vivo pharmacokinetics and biodistribution. J Drug Deliv Sci Technol . 2018; 43:129–40.

United States Pharmacopeia 35. USP 35. 322 p.

Segall A. Preformulation: The Use of FTIR in Compatibility Studies. 2019 Sep 3; 4:1–6.

Guerrero-Pérez MO, Patience GS. Experimental methods in chemical engineering: Fourier transform infrared spectroscopy—

FTIR. Vol. 98, Canadian Journal of Chemical Engineering. Wiley-Liss Inc.; 2020. p. 25–33.

Bhuwanesh Pratap S, Brajesh K, Kausar S. Development and characterization of a nanoemulsion gel formulation for transdermal delivery of carvedilol. J. Drug Dev. and Res.

Vol. 4,

Ali SK, Al-khedairy EBH. Solubility and dissolution enhancement of atorvastatin calcium using solid dispersion adsorbate technique. Iraqi J Pharm Sci. 2019;28(2):105–14.

Chaudhary B, Verma S. Preparation and evaluation of novel in situ gels containing acyclovir for the treatment of oral herpes simplex virus infections. Sci World J. 2014;2014.

Fathalla Z, Mustafa WW, Abdelkader H, Moharram H, Sabry AM, Alany RG. Hybrid thermosensitive-mucoadhesive in situ forming gels for enhanced corneal wound healing effect of L-carnosine. Drug Deliv. 2022;29(1):374–85.

Begum SG, Reddy YD, Divya BS, Komali PK, Sushmitha K, Ruksar S. Pharmaceutical incompatibilites: A review. Asian J Pharm Res Dev. 2018 ; 6(6):56–61.

Nairy H, Prabhu P, Rompicherla NC, Ahmed MG, Subrahmanyam E. Formulation and evaluation of in situ gels containing clotrimazole for oral candidiasis. Indian J Pharm Sci. 2009;71: 421–7.

Verekar RR, Gurav SS, Bolmal U. Thermosensitive mucoadhesive in situ gel for intranasal delivery of Almotriptan malate: Formulation, characterization, and evaluation. J Drug Deliv Sci Technol. 2020;58.

Gonzalez-Pujana A, Rementeria A, Blanco FJ, Igartua M, Pedraz JL, Santos-Vizcaino E, et al. The role of osmolarity adjusting agents in the regulation of encapsulated cell behavior to provide a safer and more predictable delivery of therapeutics. Drug Deliv. 2017 ;1;24(1):1654 –66.

Sigma-Aldrich. Nefopam = 98 HPLC 23327-57-3. Sigma-Aldrich. 2022. Available from: https:// www. sigmaaldrich. com/ IQ/en /product/ sigma/ sml0909.

Sukhbir S, Yashpal S, Sandeep A. Development and statistical optimization of nefopam hydrochloride loaded nanospheres for neuropathic pain using Box–Behnken design. Saudi Pharm J. 2016;24(5):588–99.

Nefopam hydrochloride - FTIR - Spectrum - SpectraBase . Available from: https:// spectrabase. com/ spectrum / JCnMoi3ySJu

Hydroxypropyl Methylcellulose, NF - FTIR - Spectrum - SpectraBase . Available from: https:// spectrabase.com /spectrum/ DEvpeVvbARG

Hyaluronic acid - FTIR - Spectrum - SpectraBase . Available from: https:// spectrabase .com/ spectrum / 3XLn9ZjUO30

Methylcellulose - ATR-IR - Spectrum - SpectraBase . Available from: https:// spectrabase .com /spectrum /9rUuGlx5tWu

Carbopol 940 - FTIR - Spectrum - SpectraBase . Available from: https:// spectrabase. com/ spectrum /4QKBtD94W2n

PLURONIC F127 - FTIR - Spectrum - SpectraBase . . Available from: https:// spectrabase. com/ spectrum/GcCJ7FQrmsj

Poly(Oxypropylene)-beta-Poly(Oxyethylene) - FTIR - Spectrum - SpectraBase . Available from: https:// spectrabase .com/ spectrum/ GB7cHySxZmz

Archakam SC, Chenchugari S, Sekhar C, Banoth K. Estimation of nefopam hydrochloride in bulk and parenteral dosage form by zero order and area under the curve uv spectrophotometric methods. J. Global Trends Pharm Sci. 2017; 8.

Downloads

Published

2023-02-16