Correlation between Trace Element Levels in Iraqi Breast Cancer Patients
DOI:
https://doi.org/10.31351/vol32iss2pp58-64Keywords:
Breast cancer, trace elements(TEs) ,colorimetric assay. oxidative stress (OxS), reactive oxygen species (ROS).Abstract
Breast Cancer (BC) is the most common disease in the human body in both sex , male and female ,Trace elements (TEs) like copper (Cu); zinc (Zn) and iron (Fe) have a vital role in biological and metabolic effects including activation or inhibition of enzymatic reaction, reactive oxygen species (ROS), competition between trace elements and metal proteins for binding positions and modifications in the permeability of cellular membranes which affect on cancers events.This paper reviews measured trace elemental concentrations of cancerous and noncancerous blood sample by drawing 5 ml of venous blood from all patient and control (healthy persons) ,the serum was separated then used to measure the Zn,Cu and Fe. by using. a convenient colorimetric assay. The statistical significant association was determined, the p values is larger than 0.05 so the data considered statistically significant ,and there is a difference in the levels of trace elements (Zn, Cu and Fe) in four groups ; the median of Zn and Cu were highest in control group compared to the rest groups ,the median of Fe is highest in benign group compared to the rest groups .
References
M. Murata, “Inflammation and cancer,” Environmental Health and Preventive Medicine, vol. 23, no. 1, p. 50, 2018.
F. R. Greten and S. I. Grivennikov, “Inflammation and cancer: triggers, mechanisms, and consequences,” Immunity, vol. 51, no. 1, pp. 27–41, 2019.
J. Kruk and H. Y. Aboul-Enein, “Reactive oxygen and nitrogen species in carcinogenesis: implications of oxidative stress on the progression and development of several cancer types,” Mini Reviews in Medicinal Chemistry, vol. 17, no. 11, pp. 904–919, 2017.
S. M. Kim, K. A. Hwang, and K. C. Choi, “Potential roles of reactive oxygen species derived from chemical substances involved in cancer development in the female reproductive system,” BMB Reports, vol. 51, no. 11, pp. 557–562, 2018.
C. Antwi-Boasiako, G. B. Dankwah, R. Aryee, C. Hayfron-Benjamin, G. Aboagye, and A. D. Campbell, “Correlation of lipid peroxidation and nitric oxide metabolites, trace elements, and antioxidant enzymes in patients with sickle cell disease,” Journal of Clinical Laboratory Analysis, vol. 34, no. 7, article e23294, 2020.
M. Conrad and B. Proneth, “Selenium: tracing another essential element of ferroptotic cell death,” Cell Chemical Biology, vol. 27, no. 4, pp. 409–419, 2020.
L. Sousa, M. T. C. Pessoa, T. G. F. Costa, V. F. Cortes, H. L. Santos, and L. A. Barbosa, “Iron overload impact on P-ATPases,” Annals of Hematology, vol. 97, no. 3, pp. 377–385, 2018.
S. Choi, X. Liu, and Z. Pan, “Zinc deficiency and cellular oxidative stress: prognostic implications in cardiovascular diseases,” Acta Pharmacologica Sinica, vol. 39, no. 7, pp. 1120–1132, 2018.
Chaudhry SA et al. Cationic zinc is required for factor XII recruitment and activation by stimulated platelets and for thrombus formation in vivo. J Thromb Haemost 18:2318-2328 (2020).
Crawford AC et al. Biphasic zinc compartmentalisation in a human fungal pathogen. PLoS Pathog 14:e1007013 (2018).
Zhu W et al. A paradox: Fe2+-containing agents decreased ROS and apoptosis induced by CoNPs in vascular endothelial cells by inhibiting HIF-1a. Biosci Rep 41:N/A (2021).
Luo H & Zhang R Icariin enhances cell survival in lipopolysaccharide-induced synoviocytes by suppressing ferroptosis via the Xc-/GPX4 axis. Exp Ther Med 21:72 (2021).
Matte, J. J., & Audet, I. (2020). Maternal perinatal transfer of vitamins and trace elements to piglets. Animal: An International Journal of Animal Bioscience, 14(1), 31-38. Assay: Copper in pig serum.
Braunschmid, V., et al. (2020). A fungal ascorbate oxidase with unexpected laccase activity. International Journal of Molecular Sciences, 21(16). Assay: Copper in yeast cells.
Lai, A., et al. (2019). 72-Hour in vivo evaluation of nitric oxide generating artificial lung gas exchange fibers in sheep. Acta Biomaterialia, 90, 122-131. Assay: Copper in sheep tissue and serum.
Lappano R., Malaguarnera R., Belfiore A., Maggiolini M. Recent advances on the stimulatory effects of metals in breast cancer. Mol. Cell. Endocrinol. 2017;457:49–56. doi: 10.1016/j.mce.2016.10.017
Wu X., Tang J., Xie M. Serum and hair zinc levels in breast cancer: A meta-analysis. Sci. Rep. 2015;5:12249. doi: 10.1038/srep12249.
Alatise O.I., Schrauzer G.N. Lead exposure: A contributing cause of the current breast cancer epidemic in Nigerian women. Biol. Trace Elem. Res. 2010;136:127–139. doi: 10.1007/s12011-010-8608-2.
Adeoti M.L., Oguntola A.S., Akanni E.O., Agodirin O.S., Oyeyemi G.M. Trace elements; copper, zinc and selenium, in breast cancer afflicted female patients in LAUTECH Osogbo, Nigeria. Indian J. Cancer. 2015;52:106–109. doi: 10.4103/0019-509X.175573
Feng J.F., Lu L., Zeng P., Yang Y.H., Luo J., Yang Y.W., Wang D. Serum total oxidant/antioxidant status and trace element levels in breast cancer patients. Int. J. Clin. Oncol. 2012;17:575–583. doi: 10.1007/s10147-011-0327-y.
Wu H.D., Chou S.Y., Chen D.R., Kuo H.W. Differentiation of serum levels of trace elements in normal and malignant breast patients. Biol. Trace Elem. Res. 2006;113:9–18. doi: 10.1385/BTER:113:1:9
Saleh F., Behbehani A., Asfar S., Khan I., Ibrahim G. Abnormal blood levels of trace elements and metals, DNA damage, and breast cancer in the state of Kuwait. Biol. Trace Elem. Res. 2011;141:96–109. doi: 10.1007/s12011-010-8724-z
Freeland-Graves J.H., Sanjeevi N., Lee J.J. Global perspectives on trace element requirements. J. Trace Elem. Med. Biol. 2015;31:135–141. doi: 10.1016/j.jtemb.2014.04.006.
Evans D.M., Zhu G., Dy V., Heath A.C., Madden P.A., Kemp J.P., McMahon G., St Pourcain B., Timpson N.J., Golding J., et al. Genome-wide association study identifies loci affecting blood copper, selenium and zinc. Human Mol. Genet. 2013;22:3998–4006. doi: 10.1093/hmg/ddt239
Harbeck N., Gnant M. Breast cancer. Lancet. 2017;389:1134–1150. doi: 10.1016/S0140-6736(16)31891-8.
Ding X., Jiang M., Jing H., Sheng W., Wang X., Han J., Wang L. Analysis of serum levels of 15 trace elements in breast cancer patients in Shandong, China. Environ. Sci. Pollut. Res. Int. 2015;22:7930–7935. doi: 10.1007/s11356-014-3970-9.
Pavithra V., Sathisha T.G., Kasturi K., Mallika D.S., Amos S.J., Ragunatha S. Serum levels of metal ions in female patients with breast cancer. J. Clin. Diagn. Res. 2015;9:BC25–BC27. doi: 10.7860/JCDR/2015/11627.5476
Choi R, Kim MJ, Sohn I, Kim S, Kim I, Ryu JM, Choi HJ, Kim JM, Lee SK, Yu J, Kim SW, Nam SJ, Lee JE, Lee SY. Serum Trace Elements and Their Associations with Breast Cancer Subgroups in Korean Breast Cancer Patients. Nutrients. 2018 Dec 24;11(1):37. doi: 10.3390/nu11010037. PMID: 30586919; PMCID: PMC6357144.
Kotsopoulos J., Sukiennicki G., Muszynska M., Gackowski D., Kaklewski K., Durda K., Jaworska K., Huzarski T., Gronwald J., Byrski T., et al. Plasma micronutrients, trace elements, and breast cancer in brca1 mutation carriers: An exploratory study. Cancer Causes Control. 2012;23:1065–1074. doi: 10.1007/s10552-012-9975-0
Blockhuys S., Celauro E., Hildesjo C., Feizi A., Stal O., Fierro-Gonzalez J.C., Wittung-Stafshede P. Defining the human copper proteome and analysis of its expression variation in cancers. Metallomics. 2017;9:112–123. doi: 10.1039/C6MT00202A
Florea A.M., Busselberg D. Metals and breast cancer: Risk factors or healing agents? J. Toxicol. 2011;2011:159619. doi: 10.1155/2011/159619.
Greenlee H., Hershman D.L., Jacobson J.S. Use of antioxidant supplements during breast cancer treatment: A comprehensive review. Breast Cancer Res. Treat. 2009;115:437–452. doi: 10.1007/s10549-008-0193-0.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Iraqi Journal of Pharmaceutical Sciences ( P-ISSN 1683 - 3597 E-ISSN 2521 - 3512)
This work is licensed under a Creative Commons Attribution 4.0 International License.