Carbapenem Resistance Related with Biofilm Formation and Pilin Genes in Clinical Pseudomonas aeruginosa Isolates

Authors

  • Tiba A. Al-Mohammed Department of Biology, College of Science, University of Anbar , Anbar , Iraq.
  • Huda. M. Mahmood Department of Biotechnology, College of Science, University of Anbar , Anbar , Iraq .

DOI:

https://doi.org/10.31351/vol33iss1pp72-78

Abstract

Pseudomonas aeruginosa is a common cause of nosocomial infections worldwide, and infections caused by this bacterial organism are difficult to eradicate because it is intrinsically resistant or less susceptible to several antimicrobial agents. The study aimed to identify the genotype distribution or frequency of virulence factors genes (algD, pilA, and pilB) involved in alginate and the type 3 system of carbapenem-resistant of  P. aeruginosa local isolates. The genotype distribution of 25 carbapenem-resistant P. aeruginosa involving the alginate was noted with the highest frequency (100%), the genes that encoded for pilin structural subunits were noted with the lowest frequency (4%) for pil B gene, and pil A gene showed (92%). The results of the PCR detection revealed the high spread of the alg D  gene, all resistant isolates contained this gene at the same time these isolates were 100% producing biofilm, alginate production is a significant factor of biofilm-associated virulence. chi-square showed a significant association between the biofilm intensity and carbapenem resistance (X² = 14.62, P < 0.023).

References

Al-Ani, L.M., Ghreeb, M. R., Mahmood, H. M., Aldahham, B.J. (2020). Teratogenicity of pyocyanin pigment isolated from local Pseudomonas aeruginosa isolates on mice neural tube defects (NTDs) and other abnormities. Sys Rev Pharm.11(7):600-604..

AlRawi, D. K., Mahmood H. M. (2022). Prevalence of biofilm genotype pattern (algD −/pslD −/pelF –) with multidrug-resistant in clinical local Pseudomonas aeruginosa isolates. Indian Journal of Forensic Medicine & Toxicology,16(1):381-391.

AL-Essawi, I.A., Mahmood, H.M. (2021). Green synthesis of gold nanoparticles and their effect on pyocyanin pigment production from local Pseudomonas aeruginosa isolates. Annals of the Romanian Society for Cell Biology, 25(1): 6737–6748.

Al-Azzawi, Shahla Najim Abed, & Abdullah, R. M. (2018). Study of the resistance of P. aeruginosa isolated from wounds and burns for some disinfects and antiseptic from some Baghdad hospitals. Journal of Pharmaceutical Sciences and Research, 10(6), 1481–1484.

Al-Wrafy, F., Brzozowska, E., Górska, S., & Gamian, A. (2017). Pathogenic factors of Pseudomonas aeruginosa - the role of biofilm in pathogenicity and as a target for phage therapy. Postepy Higieny i Medycyny Doswiadczalnej, 71(February), 78–91. https://doi.org/10.5604/01.3001.0010.3792

Al.Fahadawi, M., Al.Obadi, W., & Hasan, A. (2019). Antibiogram of Pseudomonas aeruginosa Isolated from Burn& Wound Infections Among Inpatients and Outpatients Attending to Ramadi Teaching Hospital in Ramadi, Iraq. Egyptian Academic Journal of Biological Sciences, G. Microbiology, 11(1), 13–22. https://doi.org/10.21608/eajbsg.2019.28794

Bogiel, T., Depka, D., Rzepka, M., Kwiecińska-Piróg, J., & Gospodarek-Komkowska, E. (2021). Prevalence of the genes associated with biofilm and toxins synthesis amongst the pseudomonas aeruginosa clinical strains. Antibiotics, 10(3), 1–14. https://doi.org/10.3390/antibiotics10030241

Bogiel, T., Depka, D., Rzepka, M., & Mikucka, A. (2022). Decoding Genetic Features and Antimicrobial Susceptibility of Pseudomonas aeruginosa Strains Isolated from Bloodstream Infections. International Journal of Molecular Sciences, 23(16), 2-13. https://doi.org/10.3390/ijms23169208

Bunyan, I. A., Hadi, O. M., & Al-Mansoori, H. A. K. (2018). Molecular detection of metallo-beta lactamase producing Pseudomonas aeruginosa isolated from different sites of infection. Journal of Pharmaceutical Sciences and Research, 10(5), 1072–1078.

Diggle, S. P., & Whiteley, M. (2020). Microbe Profile: Pseudomonas aeruginosa: opportunistic pathogen and lab rat. Microbiology, 166(1), 30.

El-Mahdy, R., & El-Kannishy, G. (2019). Virulence factors of carbapenem-resistant pseudomonas aeruginosa in hospital-acquired infections in Mansoura, Egypt. Infection and Drug Resistance, 12, 3455–3461. https://doi.org/10.2147/IDR.S222329

Ellappan, K., Narasimha, H. B., & Kumar, S. (2018). Coexistence of multidrug resistance mechanisms and virulence genes in carbapenem-resistant Pseudomonas aeruginosa strains from a tertiary care hospital in South India. Journal of Global Antimicrobial Resistance, 12, 37–43.

Farhan, S. M., Ibrahim, R. A., Mahran, K. M., Hetta, H. F., & El-Baky, R. M. A. (2019). Antimicrobial resistance pattern and molecular genetic distribution of Metallo-β-lactamases producing pseudomonas aeruginosa isolated from hospitals in Minia, Egypt. Infection and Drug Resistance, 12, 2125–2133. https://doi.org/10.2147/IDR.S198373

Finlayson, E. A., & Brown, P. D. (2011). Comparison of antibiotic resistance and virulence factors in pigmented and non-pigmented Pseudomonas aeruginosa. The West Indian Medical Journal, 60(1), 24–32.

Gupta, E., Mohanty, S., Sood, S., Dhawan, B., Das, B. K., & Kapil, A. (2006). Emerging resistance to carbapenems in a tertiary care hospital in north India. Indian Journal of Medical Research, 124(1), 95–98.

Hadadi-Fishani, M., Khaledi, A., & Fatemi-Nasab, Z. S. (2020). Correlation between biofilm formation and antibiotic resistance in pseudomonas aeruginosa: A meta-analysis. Infezioni in Medicina, 28(1), 47–54.

Haiko, J., & Westerlund-Wikström, B. (2013). The role of the bacterial flagellum in adhesion and virulence. Biology, 2(4), 1242–1267. https://doi.org/10.3390/biology2041242

Hogardt, M., & Heesemann, J. (2011). Microevolution of Pseudomonas aeruginosa to a chronic pathogen of the cystic fibrosis lung. Between Pathogenicity and Commensalism, 358, 91–118.

Khudair, A. N. ama, & Mahmood, S. S. (2021). Detection of the antiseptic resistance gene among Pseudomonas aeruginosa isolates. Iraqi Journal of Science, 62(1), 75–82. https://doi .org/10.24996/ ijs.2021.62.1.7

Kırmusaoğlu, S. (2019). The methods for detection of biofilm and screening antibiofilm activity of agents. Antimicrobials, Antibiotic Resistance, Antibiofilm Strategies and Activity Methods, 152, 1–17.

Kunz Coyne, A. J., El Ghali, A., Holger, D., Rebold, N., & Rybak, M. J. (2022). Therapeutic strategies for emerging multidrug-resistant Pseudomonas aeruginosa. Infectious Diseases and Therapy, 11, 661–682 .

Mahmood H.M., Nasir, G.A., Ibraheem, Q.A. (2020). Relationship between pigments production and biofilm formation from local Pseudomonas aeruginosa isolates. Iraqi journal of agricultural sciences, 51(5), 1413–1419. https://doi.org/10.36103/ijas.v51i5.115.

Matuschek, E., Brown, D. F. J., & Kahlmeter, G. (2014). Development of the EUCAST disk diffusion antimicrobial susceptibility testing method and its implementation in routine microbiology laboratories. Clinical Microbiology and Infection, 20(4),O255–O266.https: //doi.Org /10.1111/1469-0691.123 73

Meletis, G. (2016). Carbapenem resistance: overview of the problem and future perspectives. Therapeutic Advances in Infectious Disease, 3(1), 15–21.

Qader, G. M., Jarjees, K. K., & Jarjees, R. K. (2022). Molecular detection of Metallo-Beta-Lactamase and alginate in multidrug resistance Pseudomonas aeruginosa isolated from the clinical specimen. Journal of Medicine and Life, 15(9), 1105–1109. https:// doi.org/ 10. 25122 /jml-2021-0196

Ra’oof, W. M. (2011). Distribution of algD, lasB, pilB, and nan1 genes among MDR clinical isolates of Pseudomonas aeruginosa in respect to site of infection. Tikrit Medical Journal, 17(2), 148–160.

Riera, E., Cabot, G., Mulet, X., García-Castillo, M., del Campo, R., Juan, C., Cantón, R., & Oliver, A. (2011). Pseudomonas aeruginosa carbapenem resistance mechanisms in Spain: Impact on the activity of imipenem, meropenem, and doripenem. Journal of Antimicrobial Chemotherapy, 66(9), 2022–2027. https://doi.org/10.1093/jac/dkr232

Rossi Gonçalves, I., Dantas, R. C. C., Ferreira, M. L., Batistão, D. W. da F., Gontijo-Filho, P. P., & Ribas, R. M. (2017). Carbapenem-resistant Pseudomonas aeruginosa: association with virulence genes and biofilm formation. Brazilian Journal of Microbiology, 48(2), 211–217. https://doi.org/10.1016/j.bjm.2016.11.004

Shugang, Xiao, W., Zhou, C., Pu, Q., Deng, X., Lan, L., Liang, H., Song, X., & Wu, M. (2022). Pseudomonas aeruginosa: pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics. Signal Transduction and Targeted Therapy, 7(1), 1–27. https:// doi. org/ 10. 1038/s41392-022-01056-1

Umar, J. B., Ibrahim, M. M., Tom, I. M., Umoru, A. M., & Isa, T. (2016). Pseudomonas aeruginosa in otitis media. International Journal of Medicine, 4(2), 55.

Downloads

Published

2024-03-26