Formulation and in vitro Evaluation of Acemetacin Nanosuspension

Authors

  • Hussein Al-Gharani Ministry of Health and Environment, Karbala Health Directorate, Karbala, Iraq
  • Khalid Al-Kinani Department of Pharmaceutics, College of Pharmacy ,University of Baghdad, Baghdad, Iraq

DOI:

https://doi.org/10.31351/vol33iss(4SI)pp133-146

Keywords:

Acemetacin nanoparticles, Solvent-anti-solvent, Box-Behnken design.

Abstract

Acemetacin (ACM) is classified as a non-steroidal anti-inflammatory drug (NSAID). It is an indomethacin glycolic ester that is transformed into indomethacin in vivo. The analgesic, antipyretic, and anti-inflammatory properties of the ACM are attributed to its prostaglandin inhibitory action. Acemetacin belongs to biopharmaceutical classification system (BCS) class II drugs, which are characterized by having high permeability but poor aqueous solubility. The purpose of this study was to develop acemetacin nanoparticles (ACM NPs) for enhanced solubility and rate of dissolution. The solvent-anti-solvent approach was used to formulate the nanoparticles. Two stabilizers were used to prepare ACM NPs (sodium deoxycholate (SDC) and Soluplus®). Design Expert® software was used to create the experiments utilizing a computer-based approach. The Box-Behnken design was used for this purpose in order to investigate the effect of different formulation variables on particle size and polydispersity index (PDI) of ACM NPs. Using Soluplus® as a stabilizer, the chosen formula F22 has desirability value 0.701, and its particle size and PDI values were 59.69 nm and 0.1847 respectively. The saturated solubility of ACM in the generated nanoparticles was approximately ten times greater than that of the naked drug (25.01 μg/ml vs. 2.43 μg/ml), and a 100% dissolution was accomplished in 90 minutes compared to the naked ACM, which only gave 47% in this time frame. In conclusion, this is the first time reporting the preparation of ACM nanosuspension, and turning ACM into polymeric nanoparticles is an effective method to increase the solubility and rate of dissolution of the drug, readying it for incorporation into a dosage form requiring such properties.

How to Cite

1.
Hussein Al-Gharani, Khalid Al-Kinani. Formulation and in vitro Evaluation of Acemetacin Nanosuspension. Iraqi Journal of Pharmaceutical Sciences [Internet]. 2025 Feb. 15 [cited 2025 Feb. 22];33((4SI):133-46. Available from: https://bijps.uobaghdad.edu.iq/index.php/bijps/article/view/3561

Publication Dates

Received

2024-03-26

Revised

2024-04-25

Accepted

2024-07-10

Published Online First

2025-02-15

References

Patravale, V. B., Date, A. A., & Kulkarni, R. M. Nanosuspensions: a promising drug delivery strategy. Journal of Pharmacy and Pharmacology. 2010; 56(7): 827–840. https:// doi.org/10.1211/0022357023691

Chavda, H. v., Patel, C. N., & Anand, I. S. Biopharmaceutics classification system. In Systematic Reviews in Pharmacy. 2015;1(1):62–69. https://doi.org/10.4103/0975-8453.59514

Thomas, L. M., & Khasraghi, A. H. Nanotechnology-based topical drug delivery systems for management of dandruff and seborrheic dermatitis: An overview. In Iraqi Journal of Pharmaceutical Sciences. 2015; 29(1):12–32. https://doi.org /10. 31351 /VOL 29ISS1PP12-32

Alhagiesa, A. W., & Ghareeb, M. M. Formulation and Characterization of Nimodipine Nanoparticles for the Enhancement of solubility and dissolution rate, Iraqi Journal of Pharmaceutical Sciences. 2021;30(2):143–152. https://doi.org/10.31351/vol30iss2pp143-152

Jadhav, S. P., Singh, S. K., & Chawra, H. S. Review on Nanosuspension as a Novel Method for Solubility and Bioavailability Enhancement of Poorly Soluble Drugs. Advances in Pharmacology and Pharmacy. 2023;11(2):117–130. https://doi.org/10.13189/app.2023.110204

Madkour, M., Bumajdad, A., & Al-Sagheer, F. To what extent do polymeric stabilizers affect nanoparticle characteristics? In Advances in Colloid and Interface Science. 2019; 270:38–53. Elsevier B.V. https://doi.org /10.1016 /j.cis. 2019.05.004

Brayfield, Alison, Martindale: The complete drug reference, thirty-eight edition, pharmaceutical press, London, 2014. P.16.3.

Chávez-Piña, A. E., McKnight, W., Dicay, M., Castañeda-Hernández, G., & Wallace, J. L. Mechanisms underlying the anti-inflammatory activity and gastric safety of acemetacin. British Journal of Pharmacology. 2007; 152(6):930–938. https://doi.org/10.1038/sj.bjp.0707451

Sanphui, P., Bolla, G., Nangia, A., & Chernyshev, V. Acemetacin cocrystals and salts: Structure solution from powder X-ray data and form selection of the piperazine salt. IUCrJ. 2014;1:136–150. https://doi.org /10. 110 7/ S2052252514004229

Aybaba, C., Palabiyik, I. M., Caglayan, M. G., & Onur, F. Multivariate optimization of separation conditions for simultaneous determination of acemetacin and chlorzoxazone in a pharmaceutical preparation by HPLC using Response surface methodology. Journal of AOAC International. 2013; 96(4): 723–729. https://doi.org/10.5740/jaoacint.11-092

Shehata, T. M., Abdallah, M. H., & Ibrahim, M. M. Proniosomal Oral Tablets for Controlled Delivery and Enhanced Pharmacokinetic Properties of Acemetacin. AAPS PharmSciTech. 2014; 16(2):375–383. https:// doi.org/10.1208/s12249-014-0233-5

Mona A. Shewaiter, Adli A. Selim, Yasser M. Moustafa, Shadeed Gad, Hassan M. Rashed, Radioiodinated acemetacin loaded niosomes as a dual anticancer therapy, International Journal of Pharmaceutics. 2022; 628. https:// doi. org /10.1016/j.ijpharm.2022.122345

Adil Muhesen, R., & Ayash Rajab, N. Formulation and Characterization of Olmesartan medoxomil as a Nanoparticle. Research Journal of Pharmacy and Technology. 2023; 3314–3320. https:// doi. org /10. 5271 1/ 0974-360X.2023.00547

Kassab, H. J., Alkufi, H. K., & Hussein, L. S. Use of factorial design in formulation and evaluation of intrarectal in situ gel of sumatriptan. Journal of Advanced Pharmaceutical Technology and Research. 2023; 14 (2):119–124. https://doi. org/10. 4103/ japtr.japtr_603_22

Alfaris, R., & K Al-Kinani, K. Preparation and Characterization of Prednisolone Acetate Microemulsion for Ophthalmic Use. Journal of the Faculty of Medicine Baghdad. 2023;65(3):205–211. https://doi. org/10. 32007/ jfacmedbagdad.2045

Naji, G. H., & al Gawhari, F. J. Study the Effect of Formulation Variables on Preparation of Nisoldipine Loaded Nano Bilosomes. Iraqi Journal of Pharmaceutical Sciences. 2023; 32:271–282. https://doi. org/10 .31351 /vol3 2issSuppl.pp271-282

Abdullah, T., & Al-Kinani, K. Propranolol nanoemulgel: Preparation, in-vitro and ex-vivo characterization for a potential local hemangioma therapy. Pharmacia. 2024;71:1–12. https:// doi.org/ 10.3897 /pharmacia .71. e115330

Qi, X., Jiang, Y., Li, X., Zhang, Z., & Wu, Z. Zero-order release three-layered tablet with an acemetacin solid dispersion core and a hydroxypropyl methylcellulose capped matrix. Journal of Applied Polymer Science. 2015; 132 (24). https://doi.org/10.1002/app.42059

Mokarram, R. A., & zadeh, K. A. Preparation and in-vitro evaluation of indomethacin nanoparticles. DARU Journal of Pharmaceutical Sciences. 2010; 18(3):185-192.

Al-Obaidy, R. A. R., & Rajab, N. A. Preparation and In-vitro Evaluation of Darifenacin HBr as Nanoparticles Prepared as Nanosuspension. International Journal of Drug Delivery Technology. 2022; 12(2): 775–781. https://doi.org/10.25258/ijddt.12.2.55

Rashid, A. M., & Abd-Alhammid, S. N. Formulation and characterization of itraconazole as nanosuspension dosage form for enhancement of solubility. Iraqi Journal of Pharmaceutical Sciences. 2019; 28(2):124–133. https://doi.org/10.31351/vol28iss2pp124-133

Salman, A. H., Al-Gawhari, F. J., & Al-kinani, K. K. (2021). The effect of formulation and process variables on prepared etoricoxib Nanosponges. Journal of Advanced Pharmacy Education and Research. 2021;11 (2):82–87. https://doi.org/10.51847/Q0QRKUV2kQ

Kaur, A., Khodabhai Parmar, P., & Kumar Bansal, A. Evaluation of different techniques for size determination of drug nanocrystals: A case study of celecoxib nanocrystalline solid dispersion. Pharmaceutics. 2019; 11(10). https://doi.org/10.3390/pharmaceutics11100516

Guo, J. J., Yue, P. F., Lv, J. L., Han, J., Fu, S. S., Jin, S. X., Jin, S. Y., & Yuan, H. L. Development and in vivo/in vitro evaluation of novel herpetrione nanosuspension. International Journal of Pharmaceutics. 2013; 441(1–2):227–233. https:// doi.org/ 10.1016/ j.ijpharm. 2012. 11. 039

Abdullah, T. M., & Al-Kinani, K. K. Topical Propranolol Hydrochloride Nanoemulsion: A Promising Approach Drug Delivery for Infantile Hemangiomas. Iraqi Journal of Pharmaceutical Sciences. 2023; 32: 300–315. https://doi.org/10.31351/vol32issSuppl.pp300-315

Pandya, V., & Patel, D. Formulation, Optimization and characterization of Simvastatin Nanosuspension prepared by nanoprecipitation technique. Der Pharmacia Lettre, 2011; 3(2) :129 - 140. DOI: 10.14227 /DT180311P40

Gao, L., Zhang, D., & Chen, M. Drug nanocrystals for the formulation of poorly soluble drugs and its application as a potential drug delivery system. In Journal of Nanoparticle Research. 2008;10(5):845–862. https://doi.org/10.1007/s11051-008-9357-4

Danaei, M., Dehghankhold, M., Ataei, S., Hasanzadeh Davarani, F., Javanmard, R., Dokhani, A., Khorasani, S., & Mozafari, M. R. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. In Pharmaceutics. 2018;10(2). MDPI AG. https://doi. org/10.3390 /pharmaceutics10020057

Akram, W., Garud, N. Design expert as a statistical tool for optimization of 5-ASA-loaded biopolymer-based nanoparticles using Box Behnken factorial design. Futur J Pharm Sci. 2021; 7:146. https://doi.org/10.1186/s43094-021-00299-z

Albash, R., El-Nabarawi, M. A., Refai, H., & Abdelbary, A. A. Tailoring of PEGylated bilosomes for promoting the transdermal delivery of olmesartan medoxomil: Invitro characterization, ex-vivo permeation and in-vivo assessment. International Journal of Nanomedicine. 2019; 14:6555–6574. https://doi.org/10.2147/IJN.S213613

Teng, M., Li, J., Li, Z., Zhang, G., Zhao, P., & Fu, Q. Recrystallization Mediates the Gelation of Amorphous Drugs: The Case of Acemetacin. Pharmaceutics. 2023.; 15(1). https://doi.org/10.3390/pharmaceutics15010219

Afzal, A., Thayyil, M. S., Sivaramakrishnan, P. A., Sulaiman, M. K., Hussan, K. P. S., Panicker, C. Y., & Ngai, K. L. Dielectric spectroscopic studies in supercooled liquid and glassy states of Acemetacin, Brucine and Colchicine. Journal of Non-Crystalline Solids. 2019;508:33–45. https://doi.org/10.1016/j.jnoncrysol.2019.01.008

AlSheyyab RY, Obaidat RM, Altall YR, Abuhuwaij RT, Ghanma RR, Ailabouni AS, et al. Solubility enhancement of Nimodipine through preparation of Soluplus® dispersions. J Appl Pharm Sci. 2019; 9(9):30–37. DOI:10.7324/JAPS.2019.90905

Moffat, Osselton, Widdop: Clarcks analysis of drugs and poisons, Fourth edition, pharmaceutical press, London, 2011.; P.2347

Yang, H., Teng, F., Wang, P., Tian, B., Lin, X., Hu, X., Zhang, L., Zhang, K., Zhang, Y., & Tang, X. Investigation of a nanosuspension stabilized by Soluplus® to improve bioavailability. International Journal of Pharmaceutics. 2014; 477(1–2):88–95. https://doi.org/10.1016/j.ijpharm.2014.10.025

Hao, J., Gao, Y., Zhao, J., Zhang, J., Li, Q., Zhao, Z., & Liu, J. Preparation and Optimization of Resveratrol Nanosuspensions by Antisolvent Precipitation Using Box-Behnken Design. AAPS PharmSciTech. 2014; 16(1):118–128. https://doi.org/10.1208/s12249-014-0211-y

Du, J., Zhou, Y., Wang, L., & Wang, Y. Effect of PEGylated chitosan as multifunctional stabilizer for deacetyl mycoepoxydience nanosuspension design and stability evaluation. Carbohydrate Polymers. 2016; 153:471–481. https://doi.org/10.1016/j.carbpol.2016.08.002

Bajaj, A., Rao, M. R. P., Pardeshi, A., & Sali, D. Nanocrystallization by evaporative antisolvent technique for solubility and bioavailability enhancement of telmisartan. AAPS PharmSciTech. 2012; 13(4):1331–1340. https://doi.org/10.1208/s12249-012-9860-x

Mohamed S. Attia, Ahmed Elshahat, Ahmed Hamdy, Ayman M. Fathi, Mahmoud Emad-Eldin, Fakhr-Eldin S. Ghazy, Hitesh Chopra, Tarek M. Ibrahim, Soluplus® as a solubilizing excipient for poorly water-soluble drugs: Recent advances in formulation strategies and pharmaceutical product features. Journal of Drug Delivery Science and Technology. 2023; 84.

Uddhav S Bagul, Vrushali V Pisal, Nachiket V Solanki, Antara Karnavat. Current Status of Solid Lipid Nanoparticles: A Review. Mod Appl Bioequiv Availab. 2018; 3(4): 1-10.

Sable, P., Lahoti, S., Ghadalinge, S., & Sangshetti, J. Formulation and Development of Nanosuspension For Solubility Enhancement Of Gefitinib. Journal of Pharmaceutical Negative Results. 2022;13. https:// doi.org/ 10.47750/pnr.2022.13.S10.454

A. S. Noyes W. R. Whitney. The rate of solution of solid substances in their own solutions J. Am. Chem. 1897. Soc. 19:930–934

Raut M, Mahajan DT, Sakharkar DM, Bodke PS. Water and Temperature Induced Polymorphic Transformations of Mannitol. International Journal of Current Research .2011; 3(12) :169-172.

Zhang, K., Yu, H., Luo, Q., Yang, S., Lin, X., Zhang, Y., Tian, B., & Tang, X. Increased dissolution and oral absorption of itraconazole/Soluplus extrudate compared with itraconazole nanosuspension. European Journal of Pharmaceutics and Biopharmaceutics. 2013;85(3):1285–1292. https://doi.org/ 10.1016 /j.ejpb.2013.03.002

Downloads

Published

2025-02-15