Synthesis and evaluation of B-cyclodextrin Based Nanosponges of 5- Fluorouracil by Using Ultrasound Assisted Method

Authors

  • Ihsan K. Jasim bagdad university
  • Shaimaa N. Abd Alhammid
  • Alaa A. Abdulrasool

DOI:

https://doi.org/10.31351/vol29iss2pp88-98

Abstract

 

CD-nanosponges were prepared by crosslinking B-CD with diphenylcarbonate (DPC) using ultrasound assisted technique. 5-FU was incorporated with NS by freeze drying, and the phase solubility study, complexation efficiency (CE) entrapment efficiency were performed. Also, the particle morphology was studied using SEM and AFM. The in-vitro release of 5-FU from the prepared nanosponges was carried out in 0.1N HCl.

5-FU nanosponges particle size was in the nano size. The optimum formula showed a particle size of (405.46±30) nm, with a polydispersity index (PDI) (0.328±0.002) and a negative zeta potential (-18.75±1.8). Also the drug entrapment efficiency varied with the CD: DPC molar ratio from 15.6 % to 30%. The SEM and AFM showed crystalline and porous nature of the nanosponges. The in vitro drug release study of the selected formula 5-FUNS2 exhibited the fastest dissolution rate which is 56% in the first hr.

Different molar ratios of (cyclodextrin to crosslinker) (CD: DPC) has a proficient effect on complexation efficiency (CE), apparent stability constant (Kst) and entrapment efficiency of 5-FU. 5-FUNS2 with (1:4) molar ratio showed the best result of CE, Kst and entrapment efficiency. 5-FUNS2 gave a higher release rate than the 5-FU-BCD inclusion complex and 5-FU solution. Surface morphology of the prepared nanosponges by SEM, AFM indicate that nanosized and highly porous nanosponges was obtained. The overall results suggest that cyclodextrin nanosponges could be a promising 5-FU delivery system utilizing the suitable formula.

Downloads

Published

2020-12-27

How to Cite

1.
Jasim IK, N. Abd Alhammid S, A. Abdulrasool A. Synthesis and evaluation of B-cyclodextrin Based Nanosponges of 5- Fluorouracil by Using Ultrasound Assisted Method. Iraqi Journal of Pharmaceutical Sciences [Internet]. 2020 Dec. 27 [cited 2024 Nov. 5];29(2):88-9. Available from: https://bijps.uobaghdad.edu.iq/index.php/bijps/article/view/1086

Most read articles by the same author(s)